PRODUCT MONOGRAPH
INCLUDING PATIENT MEDICATION INFORMATION

Pr VOCABRIA

Cabotegravir Tablets
30 mg cabotegravir (as cabotegravir sodium)

Pr CABENUVA

Cabotegravir Extended Release Injectable Suspension
200 mg cabotegravir/mL
(600 mg/3mL and 400 mg/2mL)

and

Rilpivirine Extended Release Injectable Suspension
300 mg rilpivirine/mL
(900 mg/3mL and 600mg/2mL)

Antiretroviral Agent

ViiV Healthcare ULC
245, boulevard Armand-Frappier
Laval, Quebec
H7V 4A7

Date of Initial Approval:
March 18, 2020

Date of Revision:

Submission Control No: 227315

©2020 ViiV Healthcare group of companies or its licensor
Trademarks are owned by or licensed to the ViiV Healthcare group of companies
TABLE OF CONTENTS

TABLE OF CONTENTS ...2

PART I: HEALTH PROFESSIONAL INFORMATION..........................4

1 INDICATIONS ...4
 1.1 Pediatrics ..4
 1.2 Geriatrics ..4

2 CONTRAINDICATIONS ...4

3 DOSAGE AND ADMINISTRATION ...5
 3.1 Dosing Considerations ...5
 3.2 Recommended Dose and Dosage Adjustment5
 3.3 Administration ...7
 3.4 Missed Dose ...7

4 OVERDOSAGE ...8

5 DOSAGE FORMS, STRENGTHS, COMPOSITION AND PACKAGING9

6 WARNINGS AND PRECAUTIONS ...10
 6.1 Special Populations ...13
 6.1.1 Pregnant Women ...13
 6.1.2 Breastfeeding ...14
 6.1.3 Pediatrics ...14
 6.1.4 Geriatrics ...15

7 ADVERSE REACTIONS ...15
 7.1 Adverse Reaction Overview ..15
 7.2 Clinical Trial Adverse Reactions15
 7.3 Less Common Clinical Trial Adverse Reactions17
 7.4 Abnormal Laboratory Findings: Hematologic, Clinical Chemistry and Other Quantitative Data ...17
 7.5 Clinical Trial Adverse Reactions (Pediatrics)18
 7.6 Post-Market Adverse Reactions ..19

8 DRUG INTERACTIONS ..19
 8.1 Overview ..19
 8.2 Drug-Drug Interactions ..19
 8.3 Drug-Food Interactions ...26
 8.4 Drug-Herb Interactions ...26
 8.5 Drug-Laboratory Test Interactions26

9 ACTION AND CLINICAL PHARMACOLOGY26
 9.1 Mechanism of Action ...26
 9.2 Pharmacodynamics ..26
 9.3 Pharmacokinetics ..27

10 STORAGE, STABILITY AND DISPOSAL32

11 SPECIAL HANDLING INSTRUCTIONS32
PART II: SCIENTIFIC INFORMATION ...33
12 PHARMACEUTICAL INFORMATION ..33
13 CLINICAL TRIALS ..35
 13.1 Trial Design and Study Demographics ..35
 13.2 Study Results ...37
14 MICROBIOLOGY ..39
15 NON-CLINICAL TOXICOLOGY ...43
16 SUPPORTING PRODUCT MONOGRAPHS ..44
PATIENT MEDICATION INFORMATION ..45
PART I: HEALTH PROFESSIONAL INFORMATION

1 INDICATIONS

VOCABRIA (cabotegravir tablets) is indicated, in combination with EDURANT (rilpivirine tablets), as a complete regimen for short-term treatment of human immunodeficiency virus type 1 (HIV-1) infection in adults who are virologically stable and suppressed (HIV-1 RNA less than 50 copies/mL) as:
- an oral lead-in to assess tolerability of cabotegravir prior to initiating CABENUVA
- oral bridging therapy for missed CABENUVA injections

CABENUVA (cabotegravir and rilpivirine extended release injectable suspensions) is indicated:
- as a complete regimen for the treatment of HIV-1 infection in adults to replace the current antiretroviral regimen in patients who are virologically stable and suppressed (HIV-1 RNA less than 50 copies/mL).

1.1 Pediatrics

Pediatrics (< 18 years of age): The safety and efficacy of VOCABRIA and CABENUVA have not been established in pediatric patients less than 18 years of age.

1.2 Geriatrics

Geriatrics (> 65 years of age): Clinical studies of VOCABRIA and CABENUVA did not include sufficient numbers of patients aged 65 years and older to determine whether they respond differently from adult patients < 65 years of age.

2 CONTRAINDICATIONS

VOCABRIA and CABENUVA are contraindicated in patients who are hypersensitive to cabotegravir or rilpivirine or to any ingredient in the formulations, including any non-medicinal ingredient, or component of the containers. For a complete listing, see DOSAGE FORMS, STRENGTHS, COMPOSITION AND PACKAGING.

VOCABRIA is contraindicated in combination with the following (see DRUG INTERACTIONS):
- Anticonvulsants: Carbamazepine, oxcarbazepine, phenobarbital, and phenytoin
- Antimycobacterials: Rifampin, rifapentine

Prior to initiation of VOCABRIA, healthcare professionals should be aware that use of CABENUVA with rifabutin is contraindicated.

As VOCABRIA is taken in combination with rilpivirine tablets, the prescribing information for EDURANT should be consulted for additional contraindications.

CABENUVA is contraindicated in combination with the following (see DRUG INTERACTIONS):
- Anticonvulsants: Carbamazepine, oxcarbazepine, phenobarbital, and phenytoin
- Antimycobacterials: Rifabutin, rifampin, rifapentine
3 DOSAGE AND ADMINISTRATION

3.1 Dosing Considerations

- As with all antiretroviral drugs, therapy should be initiated by a healthcare professional experienced in the management of HIV infection.
- VOCABRIA and CABENUVA should not be used in patients with known or suspected resistance to cabotegravir or rilpirvirine.
- Since VOCABRIA is indicated in combination with EDURANT, as a complete regimen, the product monograph for EDURANT should be consulted.
- Prior to starting CABENUVA, healthcare professionals should carefully select patients who agree to the required monthly injection dosing schedule and counsel patients about the importance of adherence to scheduled dosing visits to help maintain viral suppression, reduce the risk of viral rebound and potential development of resistance with missed doses (see WARNINGS and PRECAUTIONS).

3.2 Recommended Dose and Dosage Adjustment

Dosing for CABENUVA consists of 3 distinct phases: An oral lead-in with VOCABRIA taken together with EDURANT, initiation injections of CABENUVA (3 mL), and continuation injections with CABENUVA (2 mL).

Oral lead-in
The recommended dose of VOCABRIA is one tablet, taken together with one tablet of EDURANT (rilpirvirine), orally once daily with a meal.

VOCABRIA is recommended to be administered for approximately one month (at least 28 days) prior to the initiation of CABENUVA to assess tolerability of the patient to cabotegravir. The final oral doses of VOCABRIA and EDURANT should be taken on the same day injections with CABENUVA are started. See Table 1 for recommended oral dosing schedule.

If a patient plans to miss a scheduled CABENUVA injection visit by more than 7 days, VOCABRIA may be used in combination with EDURANT once daily to replace up to 2 consecutive missed monthly injection visits (see Table 2).

Initiation Injections (3 mL Dosing Kit)
Initiate injections on the final day of oral lead-in (see Table 1). The recommended initial injection doses of CABENUVA are a single 3 mL (600 mg) intramuscular injection of cabotegravir and a single 3 mL (900 mg) intramuscular injection of rilpirvirine. Cabotegravir and rilpirvirine injections should be administered at separate gluteal sites at the same visit. Continuation injections should be initiated a month after the initiation injection.

Continuation Injections (2mL Dosing Kit)
One month following the initiation injections (see Table 1), the recommended continuation injection doses of CABENUVA are a single 2 mL (400 mg) intramuscular injection of cabotegravir and a single 2 mL (600 mg) intramuscular injection of rilpirvirine administered once
monthly. Cabotegravir and rilpivirine injections should be administered at separate gluteal sites during the same visit.

Patients may be given CABENUVA up to 7 days before or after the date of the scheduled monthly 2 mL injection dosing visit (see Table 2).

Table 1 Recommended Dosing Schedule in Adults

<table>
<thead>
<tr>
<th>ORAL LEAD-IN</th>
<th>I.M. INITIATION INJECTIONS</th>
<th>I.M. CONTINUATION INJECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 1*</td>
<td></td>
<td>Month 3 onwards</td>
</tr>
<tr>
<td>VOCABRIA</td>
<td>CABENUVA</td>
<td></td>
</tr>
<tr>
<td>30 mg cabotegravir tablet once daily</td>
<td>3 mL (600 mg) cabotegravir injection</td>
<td>CABENUVA 2 mL (400 mg) cabotegravir injection once monthly and 3 mL (900 mg) rilpivirine injection</td>
</tr>
<tr>
<td>EDURANT</td>
<td>CABENUVA</td>
<td></td>
</tr>
<tr>
<td>25 mg rilpivirine tablet once daily</td>
<td>2 mL (600 mg) rilpivirine injection once monthly</td>
<td></td>
</tr>
</tbody>
</table>

IM = Intramuscular injection
*At least 28 days
**Final oral doses of VOCABRIA and EDURANT should be taken on the same day as initiation injections are started.

Pediatrics (< 18 years of age): The safety and efficacy of VOCABRIA and CABENUVA have not been established in pediatric patients less than 18 years of age.

Geriatrics (> 65 years of age): Clinical studies of VOCABRIA and CABENUVA did not include sufficient numbers of patients aged 65 years and older to determine whether they respond differently from adult patients < 65 years of age. In general, caution should be exercised in administration of VOCABRIA and CABENUVA in elderly patients reflecting greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant diseases or other drug therapy.

Renal insufficiency: No dosage adjustment of VOCABRIA or CABENUVA is required for patients with mild to moderate renal impairment (CrCl ≥ 30 to < 90 mL/min). No dosage adjustment of VOCABRIA is required for patients with severe renal impairment (CrCl ≥15 to < 30 mL/min, not on dialysis). CABENUVA has not been studied in patients with severe renal impairment or end stage renal disease (CrCl <30 mL/min) or in patients on dialysis; increased monitoring for adverse events is recommended (see ACTION AND CLINICAL PHARMACOLOGY, Pharmacokinetics, Special Populations and Conditions, Renal Insufficiency).

Hepatic insufficiency: No dosage adjustment of VOCABRIA or CABENUVA is required in patients with mild or moderate hepatic insufficiency (Child-Pugh score A or B). VOCABRIA and CABENUVA have not been studied in patients with severe hepatic insufficiency (Child-Pugh score C) and therefore, caution should be exercised when administering VOCABRIA and CABENUVA to these patients (see ACTION AND CLINICAL PHARMACOLOGY, Pharmacokinetics, Special Populations and Conditions, Hepatic Insufficiency).
3.3 Administration

Intramuscular Injections of CABENUVA

Injections must be administered by a healthcare professional. A complete dose requires 2 injections: one injection of cabotegravir and one injection of rilpivirine. Refer to the Instructions for Use for complete administration instructions with illustrations.

CABENUVA injections are intended for gluteal intramuscular use only. Do not administer by any other route. Administer each injection at separate gluteal injection sites during the same visit. The ventrogluteal site is recommended. Consider the body mass index (BMI) of the patient to ensure that the needle length is sufficient to reach the gluteus muscle. Longer needle lengths (not included in the dosing kit) may be required for patients with higher BMI (greater than 30 kg/m²) to ensure that injections are administered intramuscularly as opposed to subcutaneously.

3.4 Missed Dose

Missed VOCABRIA or EDURANT Tablet
If the patient misses a dose of VOCABRIA or EDURANT, the patient should take the dose as soon as they remember if it is more than 12 hours until the next dose. If the next dose is due within 12 hours, the patient should skip the missed dose and resume the usual dosing schedule.

Missed CABENUVA Injections
Adherence to the CABENUVA monthly injection dosing schedule is strongly recommended. Patients who miss a scheduled injection visit should be clinically reassessed to ensure resumption of therapy remains appropriate. Refer to Table 2 for dosing recommendations after missed injections.
Table 2 **Recommendations for Missed Injections**

<table>
<thead>
<tr>
<th>Time Since Last Injection</th>
<th>Recommendations for Oral Bridging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1 Month + 7 days</td>
<td>Continue with 2 mL (400 mg) cabotegravir and 2 mL (600 mg) rilpivirine injections.</td>
</tr>
</tbody>
</table>
| **Greater than 1 Month + 7 days** | Planned Missed Injections
If a patient plans to miss a scheduled injection visit by more than 7 days, the patient should be initiated on oral therapy (1 tablet each of VOCABRIA and EDURANT, once daily), with the first oral dose taken approximately 1 month after the last injection doses. Injections are to be resumed on the same day as the last day of oral therapy dosing. Oral therapy can be used to replace up to 2 consecutive monthly injection visits. |
| **Greater than 1 Month + 7 days** | Unplanned Missed Injections
If a patient’s monthly injection visit is missed or delayed for more than 7 days and oral therapy has not been taken, patients should be clinically reassessed to ensure resumption of injections remains appropriate (e.g. evaluate patient commitment to comply with the dosing schedule and consider HIV-1 RNA viral load retesting). |

<table>
<thead>
<tr>
<th>Time Since Last Injection</th>
<th>Recommendation for Resumption of Injections</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤2 months</td>
<td>If clinically appropriate, resume with 2 mL (400 mg) cabotegravir and 2 mL (600 mg) rilpivirine injections as soon as possible. If the patient was on oral therapy, injections are to be resumed on the same day as the last day of oral therapy dosing.</td>
</tr>
<tr>
<td>>2 months</td>
<td>If clinically appropriate, reinitiate the patient on 3 mL (600 mg) cabotegravir and 3 mL (900 mg) rilpivirine, and then continue to follow the monthly 2 mL (400 mg) cabotegravir and 2 mL (600 mg) rilpivirine injection schedule. If the patient was on oral therapy, injections are to be resumed on the same day as the last day of oral therapy dosing.</td>
</tr>
</tbody>
</table>

4 OVERDOSAGE

Symptoms and signs
Experience with overdose with cabotegravir or rilpivirine is limited.

Treatment
There is no known specific treatment for overdose with cabotegravir or rilpivirine. If overdose occurs, the patient should be monitored and standard supportive treatment applied as required.

For CABENUVA this includes monitoring of vital signs and ECG (QT interval) as well as observation of the clinical status of the patient. As both cabotegravir and rilpivirine are highly bound to plasma proteins, it is unlikely that either would be significantly removed by dialysis.
Consider the prolonged exposure to cabotegravir and rilpivirine (components of CABENUVA) following an injection when assessing treatment needs and recovery.

For management of a suspected drug overdose, contact your regional poison control centre.

5 DOSAGE FORMS, STRENGTHS, COMPOSITION AND PACKAGING

Table 3 Dosage Forms, Strengths, Composition and Packaging.

<table>
<thead>
<tr>
<th>Route of Administration</th>
<th>Dosage Form / Strength/Composition</th>
<th>Non-medicinal Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>Tablet / 30 mg cabotegravir (as cabotegravir sodium)</td>
<td>hypromellose, lactose monohydrate, magnesium stearate, microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, and titanium dioxide</td>
</tr>
<tr>
<td>Intramuscular</td>
<td>Extended Release Injectable Suspension/ 600 mg cabotegravir / 3 mL Extended Release Injectable Suspension/ 900 mg rilpivirine / 3 mL</td>
<td>Cabotegravir: mannitol, polysorbate 20, polyethylene glycol (PEG) 3350, water for injection Rilpivirine: citric acid monohydrate, glucose monohydrate, poloxamer 338, sodium dihydrogen phosphate monohydrate, sodium hydroxide, water for injection</td>
</tr>
<tr>
<td>Intramuscular</td>
<td>Extended Release Injectable Suspension/ 400 mg cabotegravir / 2 mL Extended Release Injectable Suspension/ 600 mg rilpivirine / 2 mL</td>
<td></td>
</tr>
</tbody>
</table>

Dosage Forms
VOCABRIA tablets are white, film-coated, oval tablets debossed with “SV CTV” on one side. Each film-coated tablet contains 30 mg of cabotegravir (equivalent to 31.62 mg cabotegravir sodium).

CABENUVA kits contain cabotegravir 200 mg/mL as a white to light pink, free-flowing extended release injectable suspension and rilpivirine 300 mg/mL as a white to off-white extended release injectable suspension.

Packaging
VOCABRIA tablets are supplied in white HDPE (high density polyethylene) bottles with child-resistant closures. Each bottle contains 30 film-coated tablets.

CABENUVA is supplied as 2 mL and 3 mL dosing kits. Each kit contains cabotegravir extended
release injectable suspension 200 mg/mL and rilpivirine extended release injectable suspension 300 mg/mL, as follows:

2 mL CABENUVA Kit containing:
- One 2 mL single-dose vial, with a dark grey flip-off cap, of cabotegravir extended release injectable suspension containing 400 mg of cabotegravir.
- One 2 mL single-dose vial, with a mist grey flip-off cap, of rilpivirine extended release injectable suspension containing 600 mg of rilpivirine.

3 mL CABENUVA Kit containing:
- One 3 mL single-dose vial, with an orange flip-off cap, of cabotegravir extended release injectable suspension containing 600 mg of cabotegravir.
- One 3 mL single-dose vial, with a yellow flip-off cap, of rilpivirine extended release injectable suspension containing 900 mg of rilpivirine.

Each 2 mL and 3 mL dosing kit also contains 2 syringes, 2 vial adaptors, and 2 needles for intramuscular injection (23-gauge, 1½ inch). The vial stoppers are not made with natural latex rubber.

6 WARNINGS AND PRECAUTIONS

General
As with other antiretroviral medicinal products, resistance testing and/or historical resistance data should guide the use of VOCABRIA and CABENUVA. The regimen should not be used in patients with known or suspected resistance to cabotegravir or rilpivirine.

Patients receiving VOCABRIA or CABENUVA or any other antiretroviral therapy may still develop opportunistic infections and other complications of HIV infection. Therefore, patients should remain under close clinical observation by physicians experienced in the treatment of these associated HIV diseases.

While effective viral suppression with antiretroviral therapy has been proven to substantially reduce the risk of sexual transmission, a residual risk cannot be excluded. Precautions to prevent transmission should be taken in accordance with national guidelines.

Depressive Disorders
Depressive disorders (including depressed mood, depression, dysphoria, major depression, mood altered, negative thoughts, suicide attempt, and suicidal ideation) have been reported with rilpivirine-containing products (see ADVERSE REACTIONS). Promptly evaluate patients with severe depressive symptoms to assess whether the symptoms are related to CABENUVA and to determine whether the risks of continued therapy outweigh the benefits.
Hepatotoxicity

Cases of hepatotoxicity, presenting as serum transaminase elevations, have been reported in patients receiving cabotegravir with or without known pre-existing hepatic disease or other identifiable risk factors (see **ADVERSE REACTIONS**).

Hepatic adverse events have been reported in patients receiving oral rilpivirine-containing regimens. Patients with underlying hepatitis B or C or marked elevations in transaminases prior to treatment may be at increased risk for worsening or development of transaminase elevations. A few cases of hepatotoxicity have been reported in adult patients receiving oral rilpivirine-containing regimens who had no pre-existing hepatic disease or other identifiable risk factors.

Monitoring of liver chemistries is recommended, and treatment with VOCABRIA and CABENUVA should be discontinued if hepatotoxicity is suspected (see **WARNINGS AND PRECAUTIONS, Long-Acting Properties of CABENUVA and Risk of Resistance Due to Treatment Discontinuation**).

Loss of Virologic Response Due to Drug Interactions

The concomitant use of VOCABRIA or CABENUVA and other drugs may result in known or potentially significant drug interactions, some of which may lead to loss of therapeutic effect of VOCABRIA and/or CABENUVA and possible development of viral resistance (see **CONTRAINDICATIONS; DRUG INTERACTIONS**).

EDURANT at the recommended oral dose of 25 mg once daily is not associated with a clinically relevant effect on QTc interval (see **ACTION AND CLINICAL PHARMACOLOGY, Pharmacodynamics**). Plasma rilpivirine concentrations after rilpivirine injections are comparable to those during EDURANT therapy which do not prolong the QTc interval. In healthy subjects, 75 mg oral once daily rilpivirine (3 times the dose of EDURANT) and 300 mg once daily (12 times the dose of EDURANT) have been shown to prolong the QTc interval of the electrocardiogram (see **DRUG INTERACTIONS; ACTION AND CLINICAL PHARMACOLOGY, Pharmacodynamics**).

CABENUVA should be used with caution when used in combination with drugs that are known to have a risk of Torsade de Pointes. See **DRUG INTERACTIONS, Drug-Drug Interactions, Table 6** for steps to prevent or manage these possible and known significant drug interactions, including dosing recommendations. Consider the potential for drug interactions prior to and during therapy with VOCABRIA and CABENUVA; review concomitant medications during therapy with VOCABRIA and CABENUVA.

Skin and Hypersensitivity Reactions

Hypersensitivity reactions have been reported in association with other integrase inhibitors (INSTIs). These reactions were characterized by rash, constitutional findings, and sometimes organ dysfunction, including liver injury. While no such reactions have been observed to date in association with cabotegravir, remain vigilant and discontinue VOCABRIA, CABENUVA or other suspected agents, immediately if there is a suspicion of hypersensitivity reaction.

Severe skin and hypersensitivity reactions have been reported during post marketing experience with oral rilpivirine-containing regimens including cases of Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS). While some skin reactions were accompanied by constitutional symptoms such as fever, other skin reactions were associated with organ dysfunctions, including elevations in hepatic serum biochemistries. During the Phase 3 clinical
trials of oral rilpivirine, treatment-related rashes with at least Grade 2 severity were reported in 3% of patients. No Grade 4 rash was reported (see ADVERSE REACTIONS).

Discontinue VOCABRIA or CABENUVA immediately if signs or symptoms of severe skin or hypersensitivity reactions develop (including, but not limited to, severe rash, or rash accompanied by fever, general malaise, fatigue, muscle or joint aches, blisters or peeling of the skin, mucosal involvement [oral blisters or lesions], conjunctivitis, facial edema, hepatitis, eosinophilia, angioedema, or difficulty breathing). Clinical status, including laboratory parameters with liver transaminases, should be monitored and appropriate therapy initiated.

For information regarding the long-acting properties of CABENUVA, see WARNINGS AND PRECAUTIONS. Administer the oral lead-in dosing prior to administration of CABENUVA to help identify patients who may be at risk of a hypersensitivity reaction (see CONTRAINDICATIONS; DOSAGE AND ADMINISTRATION).

Long-Acting Properties of CABENUVA
Residual concentrations of cabotegravir and rilpivirine injections may remain in the systemic circulation of patients for prolonged periods (up to 12 months or longer). Consider the long-acting characteristics of cabotegravir and rilpivirine injections if CABENUVA is discontinued (see WARNINGS AND PRECAUTIONS; DRUG INTERACTIONS).

Risk of Resistance Due to Treatment Discontinuation
It is important to carefully select patients who agree to the required monthly injection dosing schedule because non-adherence to monthly injections could lead to loss of virologic response and development of resistance. To minimize the risk of developing viral resistance, it is essential to adopt an alternative, fully suppressive antiretroviral regimen no later than 1 month after the final injection doses of CABENUVA. If virologic failure is suspected, switch the patient to an alternative regimen as soon as possible (see DRUG INTERACTIONS).

Post-Injection Reactions
In clinical trials, serious post-injection reactions were reported within minutes after the injection of rilpivirine, including dyspnea, agitation, abdominal cramping, flushing, sweating, oral numbness, and changes in blood pressure. These events were reported in less than 0.5% of subjects and began to resolve within a few minutes after the injection. These events may have been associated with inadvertent (partial) intravenous administration.

Carefully follow the Instructions for Use when preparing and administering CABENUVA to avoid accidental intravenous administration. If a patient experiences a post-injection reaction, monitor and treat as clinically indicated.
Sexual Health

Reproduction

Antiretroviral Pregnancy Registry (APR): To monitor maternal-fetal outcomes of pregnant women with HIV exposed to VOCABRIA, CABENUVA and other antiretroviral agents, an Antiretroviral Pregnancy Registry has been established. Physicians are encouraged to register patients:
http://www.apregistry.com
Telephone: (800) 258-4263
Fax: (800) 800-1052

Fertility

There are no data on the effects of cabotegravir and/or rilpivirine on human male or female fertility. Animal studies indicate no effects of cabotegravir or rilpivirine on male or female fertility.

Cabotegravir when administered orally to male and female rats at exposure (AUC) greater than 20 times the exposure at the Maximum Recommended Human Dose (MRHD) of 30 mg dosed orally or 400 mg IM injection did not cause adverse effects on male or female reproductive organs or spermatogenesis, and no functional effects on mating or fertility were observed.

In rats, there were no effects on mating or fertility with rilpivirine at exposures >28 times the exposure at the MRHD of 25 mg orally once daily or 600 mg IM injection monthly.

6.1 Special Populations

6.1.1 Pregnant Women

VOCABRIA and CABENUVA have not been studied in pregnant women. There are insufficient human data on the use of CABENUVA during pregnancy to adequately assess a drug-associated risk of birth defects and miscarriage. While there are insufficient human data to assess the risk of neural tube defects (NTDs) with exposure to CABENUVA during pregnancy, NTDs were reported with dolutegravir, another integrase inhibitor. VOCABRIA and CABENUVA should not be used in pregnant women unless the potential benefits outweigh the potential risks to the fetus.

Cabotegravir
Reproductive toxicity studies in pregnant rats showed that cabotegravir crosses the placenta and can be detected in fetal tissue. Cabotegravir was not teratogenic when studied in pregnant rats and rabbits but in rats caused decreased fetal weight, a delay in the onset of parturition and increased stillbirths and neonatal deaths at exposures higher than for therapeutic doses. The relevancy to human pregnancy is unknown.

In an embryo-fetal development study, there were no adverse developmental outcomes following oral administration of cabotegravir to pregnant rabbits at doses with exposures up to 0.66 times the exposure at the MRHD of 30 mg. In rats, alterations in fetal growth (decreased body weights) were observed at exposures that were 28 times the exposure at the MRHD.
In the rat pre- and post-natal studies at exposures 28 times the exposures at the MRHD of 30 mg oral or 400 mg IM dose, cabotegravir was associated with delayed onset of parturition, and increased number of stillbirths and neonatal mortalities immediately after birth. In a cross-fostering study, similar incidences of stillbirths and early postnatal deaths were observed when rat pups born to cabotegravir-treated mothers were nursed from birth by control mothers. There was no effect on neonatal survival of control pups nursed from birth by cabotegravir-treated mothers. A lower dose of cabotegravir (at exposures >10 times the exposure at the MRHD of 30 mg oral or 400 mg IM dose) was not associated with delayed parturition or neonatal mortality in rats. In rabbit and rat studies there was no effect on survival when fetuses were delivered by caesarean section.

Rilpivirine
No significant toxicological effects were observed in embryo-fetal toxicity studies performed with rilpivirine in rats and rabbits at exposures ≥12 (rats) and ≥57 (rabbits) times the exposure at the MRHD of 25 mg orally once daily or 600 mg IM injection monthly dose of rilpivirine in HIV-1 infected patients. In a rat pre and postnatal development study, no adverse effects were noted in the offspring at maternal exposures ≥51 times the exposure at the MRHD of 25 mg orally once daily or 600 mg IM injection monthly dose of rilpivirine in HIV-1 infected patients.

Oral rilpivirine in combination with a background regimen was evaluated in a clinical trial of 19 pregnant women during the second and third trimesters, and postpartum. The pharmacokinetic data demonstrate that total exposure (AUC) to rilpivirine as a part of an antiretroviral regimen was approximately 30% lower during pregnancy compared with postpartum (6-12 weeks). Virologic response was preserved throughout the trial period. No mother to child transmission occurred in all 10 infants born to the mothers who completed the trial and for whom the HIV status was available. Rilpivirine was well tolerated during pregnancy and postpartum. There were no new safety findings compared with the known safety profile of rilpivirine in HIV-1 infected adults.

Viral load should be monitored closely if the patient receives CABENUVA during pregnancy. Cabotegravir and rilpivirine have been detected in systemic circulation for up to 12 months or longer after the last injections have been administered. Therefore, consideration should be given to the potential for fetal exposure during pregnancy (see WARNINGS AND PRECAUTIONS).

6.1.2 Breastfeeding

HIV-1 infected mothers should not breastfeed their infants to avoid risking postnatal transmission of HIV-1 infection. Based on animal studies, it is expected that cabotegravir and rilpivirine could be present in breast milk. HIV-1-infected mothers should be instructed not to breastfeed if they are receiving VOCABRIA or CABENUVA. After the last injection has been administered, cabotegravir and rilpivirine could be present in human milk for 12 months or longer.

6.1.3 Pediatrics

Pediatrics (<18 years): Safety and efficacy of VOCABRIA and CABENUVA have not been established in pediatric patients less than 18 years of age.
6.1.4 Geriatrics

Geriatrics (>65 years): Clinical studies of VOCABRIA and CABENUVA did not include sufficient numbers of patients aged 65 and older to determine whether they respond differently from adult patients less than 65 years of age.

7 ADVERSE REACTIONS

7.1 Adverse Reaction Overview

The following adverse drug reactions are discussed in the WARNINGS AND PRECAUTIONS section:

- Depressive disorders
- Hepatotoxicity
- Post-injection reactions
- Skin and hypersensitivity reactions

7.2 Clinical Trial Adverse Reactions

Because clinical trials are conducted under very specific conditions, the adverse reaction rates observed in the clinical trials may not reflect the rates observed in practice and should not be compared to the rates in the clinical trials of another drug. Adverse reaction information from clinical trials is useful for identifying drug-related adverse events and for approximating rates.

The safety assessment of CABENUVA and VOCABRIA in HIV-1-infected, virologically-suppressed patients is based on primary Week 48 analyses of pooled data from 2 international, multicenter open-label studies: FLAIR and ATLAS. Additional safety information from Phase 1 and 2 studies is presented where relevant.

In FLAIR and ATLAS, a total of 1,182 HIV-1 infected patients were randomized to receive either a cabotegravir plus rilpivirine regimen or remain on their baseline antiretroviral regimen. Patients randomized to receive the cabotegravir plus rilpivirine regimen, initiated treatment with daily oral lead-in dosing with one VOCABRIA tablet plus one EDURANT tablet for at least 4 weeks followed by treatment with CABENUVA for at least an additional 44 weeks.

In ATLAS, patients were antiretroviral treatment-experienced and virologically-suppressed (HIV-1 RNA <50 copies per mL) at time of study enrollment. In FLAIR, patients were antiretroviral treatment-naive at time of enrollment and received a dolutegravir (INSTI)-containing regimen for 20 weeks. If virologically-suppressed, patients were randomized into the cabotegravir plus rilpivirine regimen or continued with their dolutegravir (INSTI)-containing regimen.

Adverse reactions were reported following exposure to CABENUVA long-acting injectable suspensions (median exposure time: 54 weeks), as well as following exposure to VOCABRIA (cabotegravir) tablets and EDURANT (rilpivirine) tablets administered in combination as oral lead-in therapy (median time exposures: 5.3 weeks). Adverse reactions include those attributable to both the oral and injectable formulations of cabotegravir and rilpivirine administered as a combination regimen. Refer to the prescribing information for EDURANT for other adverse reactions associated with oral rilpivirine.
Overall, 4% of patients receiving CABENUVA and 2% of patients in the control group discontinued due to adverse events. Adverse events leading to discontinuation and occurring in more than 1 patient were injection site reactions, hepatitis A, acute hepatitis B, headache, and diarrhea which occurred with an incidence of ≤1%.

The most common adverse reactions of all Grades reported in ≥2% of patients in the individual and pooled analyses from the FLAIR and ATLAS studies are presented in Table 4. No deaths occurred in patients treated with cabotegravir plus rilpivirine. Selected laboratory abnormalities are included in Table 5.

Table 4 Adverse Reactions (Grades 1 to 4) Reported in ≥2% of Virologically Suppressed Subjects with HIV-1 Infection in FLAIR and ATLAS Trials (Week 48)

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>FLAIR CAB plus RPV (n=283)</th>
<th>ATLAS CAB plus RPV (n=308)</th>
<th>POOLED CAB plus RPV (n=591)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection site reactions</td>
<td>84% 0</td>
<td>81% 0</td>
<td>83% 0</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>8% 0</td>
<td>8% 0</td>
<td>8% 0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>5% 2%</td>
<td>5% 0</td>
<td>5% <1%</td>
</tr>
<tr>
<td>Headache</td>
<td>5% 1%</td>
<td>4% 0</td>
<td>4% <1%</td>
</tr>
<tr>
<td>Musculoskeletal pain</td>
<td>2% <1%</td>
<td>3% 0</td>
<td>3% <1%</td>
</tr>
<tr>
<td>Nausea</td>
<td>1% 2%</td>
<td>4% 0</td>
<td>3% 1%</td>
</tr>
<tr>
<td>Sleep disorders</td>
<td><1% <1%</td>
<td>3% <1%</td>
<td>2% <1%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>1% <1%</td>
<td>2% 0</td>
<td>2% <1%</td>
</tr>
<tr>
<td>Rash</td>
<td>2% 0</td>
<td>2% 0</td>
<td>2% 0</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>2% <1%</td>
<td><1% 0</td>
<td>1% <1%</td>
</tr>
</tbody>
</table>

* Adverse reactions defined as “treatment-related” as assessed by the investigator.
* See Injection-Associated Adverse Reactions for additional information.
* Pyrexia: includes pyrexia, feeling hot, chills, influenza-like illness, body temperature increased.
* Fatigue: includes fatigue, malaise, asthenia.
* Musculoskeletal pain: includes musculoskeletal pain, musculoskeletal discomfort, back pain, myalgia, pain in extremity.
* Sleep disorders: includes insomnia, poor quality sleep, somnolence.
* Rash: includes erythema, pruritis, pruritis generalized, purpura, rash, rash- erythematous, generalized, macular.

Local Injection Site Reactions (ISRs)

Local ISRs were the most frequent adverse events associated with the intramuscular administration of CABENUVA. After 14,682 injections, 3,663 ISRs were reported. The percentage of patients reporting ISRs decreased over time (Week 4, 70% and Week 48, 16%). A total of 1% of patients in FLAIR and ATLAS discontinued treatment with CABENUVA because of ISRs.

At the Week 48 analysis, 84% of patients had at least 1 local ISR during the analysis period. These consisted primarily of localized pain/discomfort (79%); based on all grades irrespective of relatedness. Other ISRs reported in more than 1% of patients during the analysis period included nodules (14%), induration (12%), swelling (8%), erythema (4%), pruritus (4%), bruising.
(3%), warmth (2%), and hematoma (2%). Abscess and cellulitis at the injection site were each reported in <1% of patients.

The severity of ISRs were generally mild (Grade 1, 75% of patients) or moderate (Grade 2, 36% of patients). Four percent (4%) of patients experienced severe (Grade 3) ISRs. No patients experienced Grade 4 ISRs. The median duration of all ISR events was 3 days.

Other Injection-Associated Adverse Reactions
Vasovagal or pre-syncopal reactions were reported in less than 1% of patients after injection with rilpivirine or cabotegravir.

In the ATLAS and FLAIR clinical trials, an increased incidence of pyrexia (8%) was reported by patients receiving CABENUVA injections compared with no events among patients receiving current antiretroviral regimen. No cases were serious or led to withdrawal and the occurrences of pyrexia may represent a response to administration of CABENUVA via intramuscular injection.

Reports of musculoskeletal pain (3%) and less frequently, sciatica, were also more common in patients receiving CABENUVA compared with the current antiretroviral regimen and some events had a temporal association with injection.

7.3 Less Common Clinical Trial Adverse Reactions
Select adverse reactions of all Grades that occurred in less than 2% of patients receiving cabotegravir and rilpivirine are presented below.

Gastrointestinal Disorders: Abdominal pain (including upper abdominal pain), gastritis, dyspepsia, flatulence, nausea, vomiting.

Hepatobiliary Disorders: Hepatotoxicity.
No cases of hepatotoxicity were observed in the pivotal Phase 3 studies. A few cases were identified with cabotegravir in Phase 1 and 2 trials.

Investigations: Weight increase.

Psychiatric Disorders: Anxiety (including irritability), depression, abnormal dreams.

Skin and Hypersensitivity: Hypersensitivity reactions.

7.4 Abnormal Laboratory Findings: Hematologic, Clinical Chemistry and Other Quantitative Data
Selected laboratory abnormalities with a worsening grade from baseline and representing the worst-grade toxicity are presented in Table 5.
Table 5 Selected Laboratory Abnormalities (Grades 3 to 4; Week 48 Pooled Analyses) in FLAIR and ATLAS Studies

<table>
<thead>
<tr>
<th>Laboratory Parameter Preferred Term</th>
<th>Cabotegravir plus Rilpivirine (n = 591)</th>
<th>Current Antiretroviral Regimen (n = 591)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (≥5.0 x ULN)</td>
<td>2%</td>
<td><1%</td>
</tr>
<tr>
<td>AST (≥5.0 x ULN)</td>
<td>3%</td>
<td><1%</td>
</tr>
<tr>
<td>Bilirubin (≥2.6 x ULN)</td>
<td><1%</td>
<td><1%</td>
</tr>
<tr>
<td>Creatine phosphokinase (≥10.0 x ULN)</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Lipase (≥3.0 x ULN)</td>
<td>5%</td>
<td>3%</td>
</tr>
</tbody>
</table>

ULN = Upper limit of normal.

Changes in Transaminases: A few patients had transaminase elevations attributed to suspected hepatotoxicity in relation to oral cabotegravir exposure in Phase 1 and 2 studies. Elevated transaminases (AST/ALT) were observed in patients receiving the cabotegravir and rilpivirine regimens during the pivotal Phase 3 studies; however, the primary reason for these elevations was the occurrence of acute viral hepatitis (Hepatitis A, B, C).

Changes in Total Bilirubin: Small, non-progressive increases in total bilirubin (without clinical jaundice) were observed with cabotegravir and rilpivirine regimens. These changes are not considered clinically relevant as they likely reflect competition between cabotegravir and unconjugated bilirubin for a common clearance pathway (UGT1A1) (see ACTION AND CLINICAL PHARMACOLOGY, Pharmacokinetics).

Changes in Creatine Phosphokinase (CPK): Asymptomatic CPK elevations, mainly in association with exercise, have also been reported with cabotegravir plus rilpivirine.

Weight Increased: At Week 48, patients in FLAIR and ATLAS who received cabotegravir plus rilpivirine had a median weight gain of 1.5 kg; those in the CAR group gained a median weight gain of 1.0 kg (pooled analysis). In the individual FLAIR and ATLAS studies, the median weight gain in patients receiving cabotegravir plus rilpivirine were 1.3 kg and 1.8 kg respectively, compared to 1.5 kg and 0.3 kg in patients receiving CAR.

Adrenal Function:
In the pooled Phase 3 trials of EDURANT (rilpivirine), the overall mean change from baseline in basal cortisol was -0.69 (-1.12, 0.27) micrograms/dL in the group receiving EDURANT compared with -0.02 (-0.48, 0.44) micrograms/dL in the control group. Abnormal responses to ACTH stimulation tests were also higher in the group receiving EDURANT. The clinical significance of the higher abnormal rate of ACTH stimulation tests in the group receiving EDURANT is not known. Refer to the EDURANT product monograph for additional information.

7.5 Clinical Trial Adverse Reactions (Pediatrics)

There are no clinical study data with VOCABRIA or CABENUVA in the pediatric population.
7.6 Post-Market Adverse Reactions

These events have been chosen for inclusion due to either their seriousness, frequency of reporting, potential causal connection to oral rilpivirine-containing regimens, or a combination of these factors. Because they are reported voluntarily from a population of unknown size, estimates of frequency cannot be made.

Skin and Subcutaneous Tissue Disorders: Severe skin and hypersensitivity reactions, including DRESS (see WARNINGS AND PRECAUTIONS).

8 DRUG INTERACTIONS

8.1 Overview

VOCABRIA (in combination with EDURANT) and CABENUVA are complete regimens, therefore, co-administration with other antiretroviral medications for the treatment of HIV-1 infection is not recommended. However, there are no limitations on the use of other antiretroviral medications if VOCABRIA or CABENUVA are discontinued (see DRUG INTERACTIONS, Drug-Drug Interactions, Established or Potential Drug Interactions). For additional drug interactions involving oral rilpivirine see the EDURANT product monograph.

8.2 Drug-Drug Interactions

Effect of Cabotegravir and Rilpivirine on the Pharmacokinetics of Other Agents

In vitro, cabotegravir did not inhibit (IC$_{50}$ >50 micromolar) the enzymes and transporters: cytochrome P450 (CYP)1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4; uridine diphosphate glucuronosyl transferase (UGT) 1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B15, and 2B17; P-glycoprotein (P-gp); breast cancer resistance protein (BCRP); Bile salt export pump (BSEP); organic cation transporter (OCT)1, OCT2; organic anion transporter polypeptide (OATP) 1B1, OATP1B3; multidrug and toxin extrusion transporter (MATE) 1, MATE 2-K; multidrug resistance protein (MRP) 2 or MRP4.

In vitro, cabotegravir is a metabolism dependent inhibitor of CYP3A4; however, no clinical drug interaction was observed with repeat administration of cabotegravir once daily with the CYP3A4 substrates midazolam or rilpivirine (see Table 7).

In vitro, cabotegravir inhibited the basolateral renal transporters, organic anion transporters (OAT) 1 (IC$_{50}$=0.81 micromolar) and OAT3 (IC$_{50}$=0.41 micromolar). However, based on physiologically based pharmacokinetics (PBPK) modelling no interaction with OAT substrates is expected at clinically relevant concentrations.

In vitro, cabotegravir did not induce CYP1A2, CYP2B6, or CYP3A4. Based on these data and the results of drug interaction studies, cabotegravir is not expected to affect the pharmacokinetics of drugs that are substrates of these enzymes or transporters.

Rilpivirine injection is not likely to have a clinically relevant effect on the exposure of drugs metabolized by CYP enzymes.

Based on their in vitro and clinical drug interaction profiles, cabotegravir and rilpivirine are not expected to alter concentrations of other antiretroviral medications including protease inhibitors, nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, integrase inhibitors, entry inhibitors, and ibalizumab.
Effect of Other Agents on the Pharmacokinetics of Cabotegravir or Rilpivirine

Cabotegravir
Cabotegravir is metabolized by UGT1A1 with some contribution from UGT1A9. Drugs which are strong inducers of UGT1A1 or 1A9 are expected to decrease cabotegravir plasma concentrations and may result in loss of virologic response; therefore, co-administration with these drugs is contraindicated (see CONTRAINDICATIONS). Simulations using PBPK modeling show that no clinically significant interaction is expected with co-administration of cabotegravir with drugs that inhibit these enzymes.

In vitro, cabotegravir is not a substrate of OATP1B1, OATP1B3, or OCT1 therefore drugs that solely modulate these transporters are not expected to affect cabotegravir plasma concentration.

In vitro, cabotegravir is a substrate of BCRP and P-gp, however, because of its high permeability, no alteration in cabotegravir absorption is expected when co-administered with BCRP or P-gp inhibitors.

Antacid products containing polyvalent cations (e.g. Aluminum or magnesium hydroxide, calcium carbonate) are recommended to be administered at least 2 hours before or 4 hours after taking VOCABRIA.

No drug interaction studies have been performed with cabotegravir injection. The drug interaction data provided in Table 6 is obtained from studies with oral cabotegravir.

Rilpivirine
Rilpivirine is primarily metabolized by CYP3A, and medicinal products that induce or inhibit CYP3A may affect the clearance of rilpivirine. Co-administration of rilpivirine with medicinal products that induce CYP3A may result in decreased plasma concentrations of rilpivirine and loss of virologic response and possible resistance to rilpivirine or to the class of non-nucleoside reverse transcriptase inhibitor (NNRTIs). Co-administration of rilpivirine and medicinal products that inhibit CYP3A may result in increased plasma concentrations of rilpivirine (see CONTRAINDICATIONS; DRUG INTERACTIONS; ACTION AND CLINICAL PHARMACOLOGY).

QT-Prolonging Drugs: Oral rilpivirine (EDURANT) at the recommended dose of 25 mg once daily is not associated with a clinically relevant effect on QTc interval. Plasma rilpivirine concentrations after rilpivirine injections are comparable to those during EDURANT therapy. In healthy subjects, 75 mg and 300 mg once daily oral doses of rilpivirine (3 times and 12 times the dose of EDURANT) has been shown to prolong the QTc interval of the electrocardiogram (see ACTION AND CLINICAL PHARMACOLOGY, Pharmacodynamics). CABENUVA should be used with caution in combination with drugs with a known risk of Torsade de Pointes.

No drug interaction studies have been performed with rilpivirine injection. The drug interaction data provided in Table 6 is obtained from studies with oral rilpivirine.
Established or Potential Drug Interactions

Established and theoretical interactions with selected medicinal products are listed in Table 6. The drugs listed in this table are not all-inclusive. Recommendations are based on either drug interaction studies, or potential or predicted interactions due to the expected magnitude of interaction and/or potential for serious adverse events or loss of efficacy.

Table 6 Established or Potential Drug-Drug Interactions

<table>
<thead>
<tr>
<th>Concomitant Drug Class: Drug Name</th>
<th>Effect on Concentration</th>
<th>Clinical comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antacids containing polyvalent cations (e.g., aluminum or magnesium hydroxide, calcium carbonate)</td>
<td>↓Cabotegravir (tablets)</td>
<td>Administer antacid products at least 2 hours before or 4 hours after taking VOCABRIA.</td>
</tr>
<tr>
<td>Anticonvulsants: Carbamazepine Oxcarbazepine Phenobarbital Phenytoin</td>
<td>↓Cabotegravir ↓Rilpivirine</td>
<td>Co-administration is contraindicated with VOCABRIA and CABENUVA.</td>
</tr>
<tr>
<td>Antimycobacterials: Rifampin<sup>a</sup> Rifapentine</td>
<td>↓Cabotegravir ↓Rilpivirine</td>
<td>Co-administration is contraindicated with VOCABRIA and CABENUVA.</td>
</tr>
<tr>
<td>Antimycobacterial: Rifabutin<sup>a</sup></td>
<td>↓Cabotegravir ↔Rifabutin ↓Rilpivirine</td>
<td>No dose adjustment is required with VOCABRIA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Co-administration is contraindicated with CABENUVA.</td>
</tr>
<tr>
<td>Glucocorticoid (systemic): Dexamethasone (more than a single-dose treatment)</td>
<td>↓Rilpivirine</td>
<td>Co-administration is contraindicated with CABENUVA.</td>
</tr>
<tr>
<td>Macrolide or ketolide antibiotics: Clarithromycin Erythromycin Telithromycin</td>
<td>↔Cabotegravir ↑Rilpivirine</td>
<td>For co-administration with CABENUVA, where possible, consider alternatives, such as azithromycin.</td>
</tr>
<tr>
<td>Narcotic analgesic: Methadone<sup>a</sup></td>
<td>↔Cabotegravir ↓Methadone ↔Rilpivirine</td>
<td>No dose adjustment is required when starting coadministration of methadone with CABENUVA. However, clinical monitoring is recommended as methadone maintenance therapy may need to be adjusted in some patients.</td>
</tr>
</tbody>
</table>

Legend: ↑ = Increase, ↓ = Decrease, ↔ = No change.
^aSee Tables 7 to 10 for magnitude of interaction.
Drugs without Clinically Significant Interactions

Cabotegravir

Based on drug interaction study results, the following drugs can be co-administered with cabotegravir without a dose adjustment: etravirine, midazolam, oral contraceptives containing levonorgestrel and ethinyl estradiol, and rilpivirine (see Table 7 and Table 8).

Rilpivirine

Based on drug interaction study results, the following drugs can be co-administered with rilpivirine: acetaminophen, atorvastatin, cabotegravir, chlorzoxazone, dolutegravir, ethinyl estradiol, norethindrone, raltegravir, ritonavir-boosted atazanavir, ritonavir-boosted darunavir, sildenafil, tenofovir alafenamide, and tenofovir disoproxil fumarate. Rilpivirine did not have a clinically significant effect on the pharmacokinetics of digoxin or metformin. No clinically relevant drug-drug interaction is expected when rilpivirine is co-administered with maraviroc, ribavirin, or the nucleoside reserve transcriptase inhibitors (NRTIs) abacavir, emtricitabine, lamivudine, stavudine, and zidovudine (see Table 9 and Table 10).

The effects of CAB and RPV on the exposure of co-administered drugs are shown in Table 7 and Table 9, respectively. The effects of co-administered drugs on the exposure of CAB and RPV are shown in Table 8 and Table 10, respectively.

Table 7 Effect of Cabotegravir on the Pharmacokinetics of Coadministered Drugs

<table>
<thead>
<tr>
<th>Coadministered Drug(s) and Dose(s)</th>
<th>Dose of Cabotegravir</th>
<th>n</th>
<th>Geometric Mean Ratio (90% CI) of Pharmacokinetic Parameters of Coadministered Drug with/without Cabotegravir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C<sub>max</sub></td>
</tr>
<tr>
<td>Ethinyl estradiol 0.03 mg once daily</td>
<td>30 mg once daily</td>
<td>19</td>
<td>0.92 [0.83, 1.03]</td>
</tr>
<tr>
<td>Levonorgestrel 0.15 mg once daily</td>
<td>30 mg once daily</td>
<td>19</td>
<td>1.05 [0.96, 1.15]</td>
</tr>
<tr>
<td>Midazolam 3 mg</td>
<td>30 mg once daily</td>
<td>12</td>
<td>1.09 [0.94, 1.26]</td>
</tr>
<tr>
<td>Rilpivirine 25 mg once daily</td>
<td>30 mg once daily</td>
<td>11</td>
<td>0.96 [0.85, 1.09]</td>
</tr>
</tbody>
</table>

CI = Confidence Interval; n = Maximum number of subjects with data; NA = Not available.
Table 8 Effect of Co-administered Drugs on the Pharmacokinetics of Cabotegravir

<table>
<thead>
<tr>
<th>Co-administered Drug(s) and Dose(s)</th>
<th>Dose of Cabotegravir</th>
<th>n</th>
<th>Geometric Mean Ratio (90% CI) of Cabotegravir Pharmacokinetic Parameters with/without Co-administered Drugs</th>
<th>No Effect = 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C<sub>max</sub></td>
</tr>
<tr>
<td>Etravirine 200 mg twice daily</td>
<td>30 mg once daily</td>
<td>12</td>
<td></td>
<td>1.04</td>
</tr>
<tr>
<td>Rifabutin 300 mg once daily</td>
<td>30 mg once daily</td>
<td>12</td>
<td></td>
<td>0.83 [0.76, 0.90]</td>
</tr>
<tr>
<td>Rifampin 600 mg once daily</td>
<td>30 mg single dose</td>
<td>15</td>
<td></td>
<td>0.94 [0.87, 1.02]</td>
</tr>
<tr>
<td>Rilpivirine 25 mg once daily</td>
<td>30 mg once daily</td>
<td>11</td>
<td></td>
<td>1.05 [0.96, 1.15]</td>
</tr>
</tbody>
</table>

CI = Confidence Interval; n = Maximum number of subjects with data; NA = Not available.

Table 9 Effect of Rilpivirine on the Pharmacokinetics of Co-administered Drugs

<table>
<thead>
<tr>
<th>Co-administered Drug(s) and Dose(s)</th>
<th>Dose of Rilpivirine</th>
<th>n</th>
<th>Geometric Mean Ratio (90% CI) of Co-administered Drug Pharmacokinetic Parameters with/without EDURANT</th>
<th>No Effect = 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C<sub>max</sub></td>
</tr>
<tr>
<td>Other Drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetaminophen 500 mg single dose</td>
<td>150 mg once daily<sup>a</sup></td>
<td>16</td>
<td></td>
<td>0.97 (0.86 to 1.10)</td>
</tr>
<tr>
<td>Atorvastatin 40 mg once daily</td>
<td>150 mg once daily<sup>a</sup></td>
<td>16</td>
<td></td>
<td>1.35 (1.08 to 1.68)</td>
</tr>
<tr>
<td>Chlorzoxazone 500 mg single dose taken 2 hours after rilpivirine</td>
<td>150 mg once daily<sup>a</sup></td>
<td>16</td>
<td></td>
<td>0.98 (0.85 to 1.13)</td>
</tr>
<tr>
<td>Darunavir/ritonavir 800/100 mg once daily</td>
<td>150 mg once daily<sup>a</sup></td>
<td>15</td>
<td></td>
<td>0.90 (0.81-1.00)</td>
</tr>
<tr>
<td>Didanosine 400 mg once daily delayed release capsules taken 2 hours before rilpivirine</td>
<td>150 mg once daily<sup>a</sup></td>
<td>13</td>
<td></td>
<td>0.96 (0.80-1.14)</td>
</tr>
<tr>
<td>Digoxin 0.5 mg single dose</td>
<td>25 mg once daily</td>
<td>22</td>
<td></td>
<td>1.06 (0.97 to 1.17)</td>
</tr>
<tr>
<td>Co-administered Drug(s) and Dose(s)</td>
<td>Dose of Rilpivirine</td>
<td>n</td>
<td>Geometric Mean Ratio (90% CI) of Co-administered Drug Pharmacokinetic Parameters with/without EDURANT</td>
<td>No Effect = 1.00</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C_{max}</td>
</tr>
<tr>
<td>Ethinyl estradiol</td>
<td>25 mg once daily</td>
<td>17</td>
<td>1.17</td>
<td>(1.06 to 1.30)</td>
</tr>
<tr>
<td>Norethindrone 150 mg once daily</td>
<td>150 mg once daily</td>
<td>14</td>
<td>0.85</td>
<td>(0.80 to 0.90)</td>
</tr>
<tr>
<td>Ketoconazole 150 mg once daily</td>
<td>150 mg once daily</td>
<td>15</td>
<td>0.96</td>
<td>(0.88-1.05)</td>
</tr>
<tr>
<td>Raltegravir 400/100 mg twice daily</td>
<td>150 mg once daily</td>
<td>13</td>
<td>0.86</td>
<td>(0.78 to 0.95)</td>
</tr>
<tr>
<td>Methadone 60-100 mg once daily</td>
<td>25 mg once daily</td>
<td>20</td>
<td>1.02</td>
<td>(0.95 to 1.10)</td>
</tr>
<tr>
<td>Metformin 850 mg single dose</td>
<td>25 mg once daily</td>
<td>23</td>
<td>1.10</td>
<td>(0.77-1.58)</td>
</tr>
<tr>
<td>Rifampin 600 mg once daily</td>
<td>150 mg once daily</td>
<td>16</td>
<td>1.02</td>
<td>(0.93 to 1.12)</td>
</tr>
<tr>
<td>Sildenafil 50 mg single dose</td>
<td>75 mg once daily</td>
<td>16</td>
<td>0.93</td>
<td>(0.80 to 1.08)</td>
</tr>
<tr>
<td>Tenofovir disoproxil fumarate</td>
<td>150 mg once daily</td>
<td>16</td>
<td>1.19</td>
<td>(1.06-1.34)</td>
</tr>
</tbody>
</table>

CI = Confidence Interval; n = Maximum number of subjects with data; NA = Not available.

a This interaction study has been performed with a dose higher than the recommended dose for rilpivirine (25 mg once daily) assessing the maximal effect on the coadministered drug.

b N (maximum number of subjects with data) for AUC$_{(0-\infty)}$ = 15.

c AUC$_{(0-\text{last})}$.

Table 10 Effect of Co-administered Drugs on the Pharmacokinetics of Rilpivirine

<table>
<thead>
<tr>
<th>Coadministered Drug(s) and Dose(s)</th>
<th>Dose of Rilpivirine</th>
<th>n</th>
<th>Geometric Mean Ratio (90% CI) of Rilpivirine Pharmacokinetic Parameters with/without Coadministered Drugs No Effect = 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C_{max}</td>
</tr>
<tr>
<td>Other Drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetaminophen 500 mg single dose</td>
<td>150 mg once dailya</td>
<td>16</td>
<td>1.09 (1.01 to 1.18)</td>
</tr>
<tr>
<td>Atorvastatin 40 mg once daily</td>
<td>150 mg once dailya</td>
<td>16</td>
<td>0.91 (0.79 to 1.06)</td>
</tr>
<tr>
<td>Chlorzoxazone 500 mg single dose taken 2 hours after rilpivirine</td>
<td>150 mg once dailya</td>
<td>16</td>
<td>1.17 (1.08 to 1.27)</td>
</tr>
<tr>
<td>Darunavir/ritonavir 800/100 mg once daily</td>
<td>150 mg once dailya</td>
<td>14</td>
<td>1.79 (1.56-2.06)</td>
</tr>
<tr>
<td>Didanosine 400 mg once daily delayed release capsules taken 2 hours before rilpivirine</td>
<td>150 mg once dailya</td>
<td>21</td>
<td>1.00 (0.90-1.10)</td>
</tr>
<tr>
<td>Ethinyl estradiol/ Norethindrone 0.035 mg once daily/ 1 mg once daily</td>
<td>25 mg once daily</td>
<td>15</td>
<td>\leftrightarrow^b</td>
</tr>
<tr>
<td>Ketoconazole 400 mg once daily</td>
<td>150 mg once dailyb</td>
<td>15</td>
<td>1.30 (1.13 to 1.48)</td>
</tr>
<tr>
<td>Methadone 60-100 mg once daily, individualized dose</td>
<td>25 mg once daily</td>
<td>12</td>
<td>\leftrightarrow^b</td>
</tr>
<tr>
<td>Rifabutin 300 mg once daily</td>
<td>25 mg once daily</td>
<td>18</td>
<td>0.69 (0.62 to 0.76)</td>
</tr>
<tr>
<td>Rifabutin 300 mg once daily</td>
<td>50 mg once daily</td>
<td>18</td>
<td>1.43 (1.30 to 1.56)</td>
</tr>
<tr>
<td>(as compared to 25-mg-once-daily rilpivirine alone)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifampin 600 mg once daily</td>
<td>150 mg once dailya</td>
<td>16</td>
<td>0.31 (0.27 to 0.36)</td>
</tr>
<tr>
<td>Sildenafil 50 mg single dose</td>
<td>75 mg once dailya</td>
<td>16</td>
<td>0.92 (0.85 to 0.99)</td>
</tr>
</tbody>
</table>
8.3 Drug-Food Interactions

VOCABRIA may be taken without regard to food. EDURANT should be taken with a meal to ensure optimal rilpivirine plasma concentrations. A protein-rich nutritional drink is not considered a meal (see ACTION AND CLINICAL PHARMACOLOGY).

8.4 Drug-Herb Interactions

Co-administration of St. John’s wort with regimens that include rilpivirine (i.e. EDURANT and CABENUVA) may significantly decrease rilpivirine plasma concentrations, resulting in loss of therapeutic effect. Co-administration of these regimens with products containing St. John’s wort is contraindicated.

8.5 Drug-Laboratory Test Interactions

No Drug-Laboratory interactions have been identified.

9 ACTION AND CLINICAL PHARMACOLOGY

9.1 Mechanism of Action

Cabotegravir inhibits HIV integrase by binding to the integrase active site and blocking the strand transfer step of retroviral deoxyribonucleic acid (DNA) integration which is essential for the HIV replication cycle.

Rilpivirine is a diarylpyrimidine NNRTI of HIV-1. Rilpivirine activity is mediated by non-competitive inhibition of HIV-1 reverse transcriptase (RT). Rilpivirine does not inhibit the human cellular DNA polymerases α, β, and γ.

9.2 Pharmacodynamics

Effects on Electrocardiogram

Cabotegravir

In a randomized, placebo-controlled, 3-period cross-over trial, 42 healthy subjects were randomized into 6 random sequences and received 3 oral doses of placebo, cabotegravir...
150 mg every 12 hours (C_{max} approximately 3-fold of the 30-mg once-daily dose), and a single
dose of moxifloxacin 400 mg (active control). After baseline and placebo adjustment, the
maximum time-matched mean QTc change based on Fridericia’s correction method (QTcF) for
cabotegravir was 2.62 msec (1-sided 90% upper CI: 5.26 msec). Cabotegravir did not prolong
the QTc interval over 24 hours post dose.

Rilpivirine
The effect of rilpivirine at the recommended oral dose of 25 mg once daily on the QTcF interval
was evaluated in a randomised, placebo and active (moxifloxacin 400 mg once daily) controlled
crossover study in 60 healthy adults. Rilpivirine at the recommended dose of 25 mg once daily
is not associated with a clinically relevant effect on QTc. The maximum mean time-matched
(95% upper confidence bound) differences in QTcF interval from placebo after baseline
correction was 2.0 (5.0) msec (i.e., below the threshold of clinical concern).

When supratherapeutic doses of 75 mg and 300 mg once daily oral of rilpivirine were studied in
healthy adults, the maximum mean time-matched (95% upper confidence bound) differences in
QTcF interval from placebo after baseline correction were 10.7 (15.3) and 23.3 (28.4) msec,
respectively. Steady-state administration of rilpivirine 75 mg and 300 mg once daily resulted in a
mean C_{max} approximately 4.4-fold and 11.6-fold, respectively, higher than the mean steady-state
C_{max} observed with the recommended 600-mg monthly dose of rilpivirine long-acting injectable
suspension (see **WARNINGS AND PRECAUTIONS; DRUG INTERACTIONS**).

9.3 Pharmacokinetics

The pharmacokinetic (PK) properties of the components of VOCABRIA and CABENUVA are
provided in **Table 11**. The multiple-dose pharmacokinetic parameters are provided in **Table 12**
and **Table 13**.
Table 11 Pharmacokinetic Properties of VOCABRIA (Cabotegravir Tablets) and CABENUVA (Cabotegravir Injection and Rilpivirine Injection)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cabotegravir Tablets</th>
<th>Cabotegravir Injection</th>
<th>Rilpivirine Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{max}, median</td>
<td>3 hours</td>
<td>7 days</td>
<td>3 to 4 days</td>
</tr>
<tr>
<td>Effect of high-fat meal (relative to fasting): AUC$_T$ ratioa</td>
<td>1.14</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bound to human plasma proteins</td>
<td>>99.8%</td>
<td>>99.8%</td>
<td>99.7%</td>
</tr>
<tr>
<td>Blood-to-plasma ratio</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic pathways</td>
<td>UGT1A1 UGT1A9 (minor)</td>
<td>UGT1A1 UGT1A9 (minor)</td>
<td>CYP3A</td>
</tr>
<tr>
<td>Elimination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{1/2}$, mean</td>
<td>41 (h)</td>
<td>5.6 to 11.5 (wks.b)</td>
<td>13 to 28 (wks.b)</td>
</tr>
<tr>
<td>Major route of elimination</td>
<td>Metabolism</td>
<td>Metabolism</td>
<td>Metabolism</td>
</tr>
<tr>
<td>% Dose excreted as total 14C (unchanged drug) in urinec</td>
<td>27 (0)</td>
<td>27(0)</td>
<td>6(<1)</td>
</tr>
<tr>
<td>% Dose excreted as total 14C (unchanged drug) in fecesc</td>
<td>59 (47)</td>
<td>59 (47)</td>
<td>85 (26)</td>
</tr>
</tbody>
</table>

a Geometric mean ratio (fed/fasted) in pharmacokinetic parameters and 90% confidence interval. High calorie/high-fat meal = 870 kcal, 53% fat.

b $t_{1/2}$ absorption rate limited; wks. = weeks

c Dosing in mass balance studies: single-dose oral administration of [14C] cabotegravir; single-dose oral administration of [14C] rilpivirine.

Table 12 Multiple-Dose Pharmacokinetic Properties of VOCABRIA (Cabotegravir Tablets)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Geometric Mean (95% CI)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max} (mcg/mL)</td>
<td>8.1 (7.9, 8.2)</td>
</tr>
<tr>
<td>AUC$_{\text{tau}}$ (mcg.h/mL)</td>
<td>146 (143, 149)</td>
</tr>
<tr>
<td>C_{trough} (mcg/mL)</td>
<td>4.7 (4.6, 4.8)</td>
</tr>
</tbody>
</table>

a Pharmacokinetic parameter values were based on individual post-hoc estimates from the final population pharmacokinetic model for subjects receiving 30 mg of oral cabotegravir once daily in FLAIR and ATLAS.
Table 13 Multiple-Dose Pharmacokinetic Parameters following Monthly IM Injections of the Components of CABENUVA (Cabotegravir Injection and Rilpivirine Injection)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>AUC<sub>tau</sub> (mcg•h/mL)</th>
<th>C<sub>max</sub> (mcg/mL)</th>
<th>C<sub>trough</sub> (mcg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabotegravir</td>
<td>400-mg monthly IM Injection</td>
<td>2,461 (2,413, 2,510)</td>
<td>4.2 (4.1, 4.3)</td>
<td>2.9 (2.9, 3.0)</td>
</tr>
<tr>
<td>Rilpivirine</td>
<td>600-mg monthly IM Injection</td>
<td>65,603 (63,756, 67,503)</td>
<td>116 (113, 119)</td>
<td>82.2 (79.9, 84.6)</td>
</tr>
</tbody>
</table>

^a Pharmacokinetic (PK) parameter values were based on individual post-hoc estimates from separate cabotegravir and rilpivirine population PK models for patients in FLAIR and ATLAS.

Absorption:

Oral Cabotegravir
Cabotegravir is rapidly absorbed following oral administration of the tablet formulation, with median T_{max} at 3 hours. Following oral administration of the tablet formulation, cabotegravir pharmacokinetics was slightly less than dose-proportional from 5 mg to 50 mg. With once daily dosing, pharmacokinetic steady-state is achieved by 7 days.

The absolute bioavailability of cabotegravir has not been established.

Effects of Food on Oral Absorption
Food increased the rate and extent of absorption of cabotegravir: high fat meals increased cabotegravir AUC_(T) by 14% and increased C_{max} by 14% relative to fasted conditions. These increases are not clinically significant.

Cabotegravir Injection
Cabotegravir injection exhibits absorption-limited (flip-flop) kinetics resulting from slow absorption from the gluteal muscle into systemic circulation resulting in sustained plasma concentrations. Following a single intramuscular dose, plasma cabotegravir concentrations are detectable on the first day and gradually rise to reach maximum plasma concentration with a median T_{max} of 7 days. Cabotegravir has been detected in plasma up to 52 weeks or longer after administration of a single injection. Pharmacokinetic steady-state is achieved by 44 weeks.

Plasma cabotegravir exposure increases in proportion or slightly less than in proportion to dose following single and repeat IM injection of doses ranging from 100 to 800 mg.

Rilpivirine Injection
Rilpivirine injection exhibits absorption-limited (flip-flop) kinetics resulting from slow absorption from the gluteal muscle into the systemic circulation resulting in sustained plasma concentrations. Following a single intramuscular dose, plasma rilpivirine concentrations are detectable on the first day and gradually rise to reach maximum plasma concentration with a median T_{max} of 3-4 days. Rilpivirine has been detected in plasma for longer than 52 weeks after administration of a single injection. About 80% of the rilpivirine steady-state exposure is
reached by 48 weeks. After that, there is limited accumulation, with pharmacokinetic steady-state reached after approximately 2 years.

Plasma rilpivirine exposure increases in proportion or slightly less than in proportion to dose following single and repeat IM injection of doses ranging from 300 to 1200 mg.

Distribution:

Cabotegravir
Cabotegravir is highly bound (approximately >99%) to human plasma proteins, based on *in vitro* data. Following administration of oral tablets, the mean apparent oral volume of distribution ($V_{z/F}$) in plasma was 12.3 L. In humans, the estimate of plasma cabotegravir $V_{c/F}$ was 5.27 L and $V_{p/F}$ was 2.43 L. These volume estimates, along with the assumption of high F, suggest some distribution of cabotegravir to the extracellular space.

Cabotegravir is present in the female and male genital tract. Median cervical and vaginal tissue:plasma ratios ranged from 0.16 to 0.28 and median rectal tissue:plasma ratios were ≤0.08 following a single 400mg IM injection at 4, 8, and 12 weeks after dosing.

Rilpivirine
Rilpivirine is highly bound (approximately 99.7%) to plasma proteins *in vitro*, primarily to albumin. Data from investigator studies suggest that rilpivirine distributes into genital tract.

Cerebrospinal Fluid (CSF)
Cabotegravir is present in CSF. In HIV-1 infected patients receiving cabotegravir long-acting injectable suspension plus rilpivirine long-acting injectable suspension in combination, the median cabotegravir CSF-to-plasma concentration ratio (n=16) was 0.304% to 0.344% (range: 0.218% to 0.449%) and higher than corresponding median unbound cabotegravir concentrations in plasma 1 week following a steady-state cabotegravir injection or rilpivirine injection given monthly or every 2 months. Rilpivirine is present in CSF. In the same 16 patients, the median rilpivirine CSF to plasma ratio was 1.07% to 1.32% (range: not quantifiable to 1.69%). Consistent with therapeutic cabotegravir and rilpivirine concentrations in the CSF, CSF HIV-1 RNA concentrations (n=16) were <50 copies/mL in 100% and <2 copies/mL in 15/16 (94%) of patients. At the same time point, plasma HIV-1 RNA concentrations (n=18) were <50 copies/mL in 100% and <2 copies/mL in 12/18 (66.7%) of patients.

Metabolism:

Cabotegravir
Cabotegravir is primarily metabolised by UGT1A1 with a minor UGT1A9 component. Cabotegravir is the predominant circulating compound in plasma, representing > 90% of plasma total radiocarbon. Following oral administration in humans, cabotegravir is primarily eliminated through metabolism; renal elimination of unchanged cabotegravir is low (<1% of the dose). Forty-seven percent of the total oral dose is excreted as unchanged cabotegravir in the faeces. It is unknown if all or part of this is due to unabsorbed drug or biliary excretion of the glucuronide conjugate, which can be further degraded to form the parent compound in the gut lumen. Cabotegravir was observed to be present in duodenal bile samples. The glucuronide metabolite was also present in some but not all of the duodenal bile samples. Twenty-seven percent of the total oral dose is excreted in the urine, primarily as a glucuronide metabolite (75% of urine radioactivity, 20% of total dose).
Rilpivirine
In vitro experiments indicate that rilpivirine primarily undergoes oxidative metabolism mediated by the cytochrome P450 (CYP) 3A system.

Elimination:

Oral Cabotegravir
Cabotegravir has a mean terminal half-life of 41 h and an apparent clearance (CL/F) of 0.151 L per hour based on population pharmacokinetic analyses.

Cabotegravir Injection
Cabotegravir mean apparent terminal phase half-life is absorption-rate limited and is estimated to be 5.6 to 11.5 weeks after a single dose IM injection. The significantly longer apparent half-life compared to oral reflects elimination from the depot site (absorption from depot site) rather than the systemic circulation.

Rilpivirine Injection
The rilpivirine apparent terminal elimination half-life after IM injection is absorption-rate limited and estimated to be 13 to 28 weeks. The apparent plasma clearance (CL/F) of rilpivirine after IM administration was 5.08 L/h. After single-dose oral administration of 14C-rilpivirine, on average 85% and 6.1% of the radioactivity could be retrieved in feces and urine, respectively. In feces, unchanged rilpivirine accounted for on average 25% of the administered dose. Only trace amounts of unchanged rilpivirine (< 1% of dose) were detected in urine.

Special Populations and Conditions

Pediatrics: VOCABRIA and CABENUVA have not been studied in the pediatric population.

Geriatrics: Population pharmacokinetic analyses indicated age had no clinically relevant effect on the pharmacokinetics of cabotegravir or rilpivirine. Pharmacokinetic data in subjects aged 65 years and older are limited.

Sex: Population pharmacokinetic analyses revealed that gender had no clinically relevant effect on the pharmacokinetics of cabotegravir or rilpivirine.

Ethnic origin: Population pharmacokinetic analyses revealed that race had no clinically relevant effect on the pharmacokinetics of cabotegravir or rilpivirine.

Hepatic Insufficiency: No clinically important pharmacokinetic differences between patients with moderate hepatic impairment and matching healthy subjects were observed with oral cabotegravir. No dosage adjustment is necessary for patients with mild to moderate hepatic impairment (Child-Pugh Score A or B). The effect of severe hepatic impairment (Child-Pugh Score C) on the pharmacokinetics of cabotegravir has not been studied.

Rilpivirine exposure was 47% higher in subjects (n = 8) with mild hepatic impairment (Child-Pugh Score A) and 5% higher in subjects (n = 8) with moderate hepatic impairment (Child-Pugh Score B) compared with matched controls. The effect of severe hepatic impairment (Child-Pugh Score C) on the pharmacokinetics of rilpivirine has not been studied.

Renal Insufficiency: No clinically important pharmacokinetic differences between subjects with severe renal impairment (CrCL <30 mL/min and not on dialysis) and matching healthy subjects
were observed with oral cabotegravir. No dosage adjustment is necessary for patients with mild to severe renal impairment (not on dialysis). Cabotegravir has not been studied in patients requiring dialysis.

Population pharmacokinetic analyses indicated that mild renal impairment had no clinically relevant effect on the exposure of oral rilpivirine. There is limited or no information regarding the pharmacokinetics of rilpivirine in patients with moderate or severe renal impairment, end-stage renal disease, or patients requiring dialysis.

Obesity: Population pharmacokinetic analyses revealed no clinically relevant effect of BMI on the exposure of cabotegravir or rilpivirine, therefore no dose adjustment is required on the basis of BMI. When preparing to administer CABENUVA, consider the BMI of the patient to ensure that the needle length is sufficient to reach the gluteus muscle.

Hepatitis B or Hepatitis C Co-infection: Cabotegravir plus rilpivirine has not been studied in patients with hepatitis B co-infection. There is limited experience in patients with hepatitis C co-infection without evidence of advanced liver disease receiving cabotegravir and rilpivirine.

Polymorphisms in Drug Metabolising Enzymes: In a meta-analysis of healthy and HIV-infected subjects, HIV-infected subjects with UGT1A1 genotypes conferring poor cabotegravir metabolism had a 1.2-fold increase in mean steady-state cabotegravir AUC, C\text{max}, and C\text{tau} following cabotegravir long-acting injection vs. 1.38-fold mean increase following oral cabotegravir administration. This was similar to 1.3- to 1.5-fold mean increase in steady-state cabotegravir, cabotegravir AUC, C\text{max}, and C\text{tau} observed following oral cabotegravir in healthy and HIV infected subjects combined. Polymorphisms in UGT1A9 were not associated with differences in the pharmacokinetics of cabotegravir, therefore, no dose adjustment is required in subjects with either UGT1A1 or UTG1A9 polymorphisms.

10 STORAGE, STABILITY AND DISPOSAL

Store VOCABRIA up to 30°C.

Store CABENUVA in refrigerator at 2°C to 8°C in the original carton. Do not freeze.

11 SPECIAL HANDLING INSTRUCTIONS

CABENUVA

Prior to administration, vials should be brought to room temperature (not to exceed 25°C). Vials may remain in the carton at room temperature for up to 6 hours. If not used after 6 hours, they must be discarded.

Once the suspension has been drawn into the respective syringes, the injections should be administered as soon as possible, but may remain in the syringe for up to 2 hours. If 2 hours are exceeded, the medications, syringes, and needles must be discarded.
PART II: SCIENTIFIC INFORMATION

12 PHARMACEUTICAL INFORMATION

Cabotegravir – Oral Tablets

Drug Substance

Common name: cabotegravir sodium

Chemical name: sodium (3S,11aR)-N-[(2,4-difluorophenyl)methyl]-6-hydroxy-3-methyl-5,7-dioxo-2,3,5,7,11,11a-hexahydro[1,3]oxazolo[3,2-a]pyrido[1,2-d]pyrazine-8-carboxamide

Molecular formula and molecular mass: C_{19}H_{16}F_{2}N_{3}NaO_{5}
427.33 g/mol

Structural formula:

Physicochemical properties: Cabotegravir sodium is a white to almost white solid that is slightly soluble in water. Over most of the physiological pH range cabotegravir sodium is practically insoluble.

Cabotegravir – Extended Release Injectable Suspension

Drug Substance

Common name: cabotegravir

Chemical name: (3S,11aR)-N-[(2,4-Difluorophenyl)methyl]-6-hydroxy-3-methyl-5,7-dioxo-2,3,5,7,11,11a-hexahydro[1,3]oxazolo[3,2-a]pyrido[1,2-d]pyrazine-8-carboxamide

Molecular formula and molecular mass: C_{19}H_{17}F_{2}N_{3}O_{5}
405.35 g/mol

Structural formula:

Physicochemical properties: Cabotegravir is white to almost white solid that is practically
insoluble in water. Over most of the physiological pH range cabotegravir is practically insoluble.

Rilpivirine – Extended Release Injectable Suspension

Drug Substance

Common name: rilpivirine

Chemical name: 4-[[4-[(E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile

Molecular formula and molecular mass: $C_{22}H_{18}N_6$
366.42 g/mol

Structural formula:

![Structural formula of Rilpivirine]

Physicochemical properties: Rilpivirine drug substance is a white to slightly yellow powder. It is practically insoluble or insoluble in aqueous media over the physiological range.
13 CLINICAL TRIALS

13.1 Trial Design and Study Demographics

The efficacy of VOCABRIA and CABENUVA have been evaluated in two Phase 3 randomised, multicenter, active-controlled, parallel-arm, open-label, non-inferiority trials, [FLAIR (201584) and ATLAS (201585)] in virologically-suppressed patients.

Table 14 Summary of Study Design for FLAIR and ATLAS (Pivotal Phase 3 studies)

<table>
<thead>
<tr>
<th>Study #</th>
<th>Study design</th>
<th>Dosage, route of administration and duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAIR (201584)</td>
<td>Randomized, multicenter, active-controlled, parallel-arm, open-label, non-inferiority study.</td>
<td>Cabotegravir + rilpivirine regimen:</td>
</tr>
<tr>
<td></td>
<td>HIV-1-infected, antiretroviral treatment-naive patients (n = 629) received a dolutegravir INSTI-containing regimen for 20 weeks (either DTG/ABC/3TC or DTG plus 2 other NRTIs if subjects were HLA-B*5701 positive). Subjects who were virologically-suppressed (HIV-1 RNA <50 copies per mL, n = 566) were then randomised to receive the cabotegravir + rilpivirine regimen (oral lead-in + injections) or remain on CAR.</td>
<td>Oral Lead-In (at least 4 weeks): Daily oral lead-in dosing with one 30-mg cabotegravir (VOCABRIA) tablet plus one 25-mg rilpivirine tablet (EDURANT). Monthly IM injections (additional 44 weeks): cabotegravir long-acting injectable suspension plus rilpivirine long-acting injectable suspension (CABENUVA).</td>
</tr>
<tr>
<td></td>
<td>Primary endpoint: The proportion of subjects with plasma HIV-1 RNA ≥50 copies/mL at Week 48 (snapshot algorithm for the ITT-E population).</td>
<td>CAR (Current Antiretroviral Regimen): 48-weeks: Oral dosing of DTG/ABC/3TC or DTG plus 2 other NRTIs if HLA B*5701 positive.</td>
</tr>
<tr>
<td>ATLAS (201585)</td>
<td>Randomized, multicenter, active-controlled, parallel-arm, open-label, non-inferiority study.</td>
<td>Cabotegravir + rilpivirine regimen:</td>
</tr>
<tr>
<td></td>
<td>HIV-1-infected, ART-experienced, virologically-suppressed patients [HIV-1 RNA <50 copies per mL, for at least 6 months (median 4.3 years), n = 616] were randomised and received the cabotegravir + rilpivirine regimen (oral lead-in + injections) or remain on CAR.</td>
<td>Oral Lead-In (at least 4 weeks): Daily oral lead-in dosing with one 30-mg cabotegravir (VOCABRIA) tablet plus one 25-mg rilpivirine tablet (EDURANT). Monthly IM injections (additional 44 weeks): cabotegravir long-acting injectable suspension plus rilpivirine long-acting injectable suspension (CABENUVA).</td>
</tr>
<tr>
<td></td>
<td>Primary endpoint: The proportion of subjects with plasma HIV-1 RNA ≥50 copies/mL at Week 48 (snapshot algorithm for the ITT-E population).</td>
<td>CAR: 48-weeks: Oral dosing of NNRTI+2NRTIs or PI+2NRTIs or INSTI+2NRTIs.</td>
</tr>
</tbody>
</table>
A summary of the demographic characteristics for FLAIR and ATLAS are presented in Table 15 and Table 16.

Table 15 Summary of Demographic Characteristics for Studies FLAIR (201584), ATLAS (201585) and Pooled Data (ITT-E Population)

<table>
<thead>
<tr>
<th>Demographic Characteristic</th>
<th>FLAIR 201584</th>
<th>ATLAS 201585</th>
<th>Pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB + RPV N=283</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAB + RPV N=283</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAR N=283</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>34.0 (19-68)</td>
<td>34.0 (18-68)</td>
<td>40.0 (21-74)</td>
</tr>
<tr>
<td>Age, Groups (yrs), n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><35</td>
<td>143 (51)</td>
<td>145 (51)</td>
<td>80 (26)</td>
</tr>
<tr>
<td>35 to <50</td>
<td>107 (38)</td>
<td>109 (39)</td>
<td>162 (53)</td>
</tr>
<tr>
<td>≥50</td>
<td>33 (12)</td>
<td>29 (10)</td>
<td>66 (21)</td>
</tr>
<tr>
<td>Sex at Birth, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>63 (22)</td>
<td>64 (23)</td>
<td>99 (32)</td>
</tr>
<tr>
<td>Male</td>
<td>220 (78)</td>
<td>219 (77)</td>
<td>209 (68)</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²) at Baseline a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>24.10 (17.3-44.9)</td>
<td>24.00 (12.6-47.4)</td>
<td>25.50 (15.3-50.9)</td>
</tr>
<tr>
<td>Race Subgroups, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African/African Heritage</td>
<td>47 (17)</td>
<td>56 (20)</td>
<td>62 (20)</td>
</tr>
<tr>
<td>Asian</td>
<td>12 (4)</td>
<td>15 (5)</td>
<td>22 (7)</td>
</tr>
<tr>
<td>White</td>
<td>216 (76)</td>
<td>201 (71)</td>
<td>214 (69)</td>
</tr>
<tr>
<td>Other</td>
<td>8 (3)</td>
<td>9 (3)</td>
<td>10 (3)</td>
</tr>
</tbody>
</table>

CAR = Current antiretroviral regimen
For Study 201584, CAR = ABC/DTG/3TC or DTG+2NRTIs if HLA B*5701 positive
For Study 201585, CAR = NNRTI+2NRTIs or PI+2NRTIs or INSTI+2NRTIs
a. 201584 Baseline values = Induction Baseline (Week -20)
Table 16 Summary of Baseline Characteristics for Studies FLAIR (201584), ATLAS (201585) and Pooled Data (ITT-E Population)

<table>
<thead>
<tr>
<th></th>
<th>FLAIR 201584</th>
<th>ATLAS 201585</th>
<th>Pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAB + RPV</td>
<td>(N=283)</td>
<td>CAB + RPV</td>
<td>CAB + RPV</td>
</tr>
<tr>
<td>CAR</td>
<td>(N=283)</td>
<td>CAR</td>
<td>CAR</td>
</tr>
<tr>
<td>Induction Baseline (Week -20) HIV-1 RNA c/mL, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><100,000</td>
<td>227 (80)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>≥100,000</td>
<td>56 (20)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Time from First HIV-1 RNA <50 c/mL until Maintenance Phase Start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (Weeks) (IQR)</td>
<td>16.10 (12.40, 16.10)</td>
<td>16.10 (15.30, 16.30)</td>
<td>NA</td>
</tr>
<tr>
<td>Time Since First ART Until Maintenance Phase Start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 20 weeks a</td>
<td>20 weeks a</td>
<td>52 months b</td>
<td>52 months b</td>
</tr>
<tr>
<td>Baseline CD4+ (cells/mm³)</td>
<td>Median (IQR)</td>
<td>(IQR 33, 87)</td>
<td>(IQR 33, 84)</td>
</tr>
<tr>
<td><350</td>
<td>624 (473, 839)</td>
<td>625 (472, 799)</td>
<td>654 (497, 816)</td>
</tr>
<tr>
<td>≥350 to <500</td>
<td>653 (488, 844)</td>
<td>645 (487, 824)</td>
<td>641 (480, 821)</td>
</tr>
<tr>
<td>≥500</td>
<td>653 (488, 844)</td>
<td>645 (487, 824)</td>
<td>641 (480, 821)</td>
</tr>
<tr>
<td>Derived Baseline CDC Classification, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV infection stage 1</td>
<td>200 (71)</td>
<td>196 (69)</td>
<td>229 (74)</td>
</tr>
<tr>
<td>HIV infection stage 2</td>
<td>224 (73)</td>
<td>422 (73)</td>
<td>420 (71)</td>
</tr>
<tr>
<td>HIV infection stage 3</td>
<td>429 (73)</td>
<td>420 (71)</td>
<td></td>
</tr>
<tr>
<td>Induction Baseline (Week -20) Most Prevalent HIV-1 Subtype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>46 (16)</td>
<td>36 (13)</td>
<td>NA</td>
</tr>
<tr>
<td>B</td>
<td>174 (61)</td>
<td>174 (61)</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>18 (6)</td>
<td>20 (7)</td>
<td>NA</td>
</tr>
<tr>
<td>Baseline Third Agent Class, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNRTI</td>
<td>NA</td>
<td>NA</td>
<td>155 (50)</td>
</tr>
<tr>
<td>INSTI c</td>
<td>NA</td>
<td>102 (33)</td>
<td>99 (32)</td>
</tr>
<tr>
<td>PI</td>
<td>NA</td>
<td>51 (17)</td>
<td>54 (18)</td>
</tr>
<tr>
<td>Hepatitis C, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-reactive</td>
<td>264 (93)</td>
<td>274 (97)</td>
<td>285 (93)</td>
</tr>
<tr>
<td>Reactive</td>
<td>19 (7)</td>
<td>9 (3)</td>
<td>23 (7)</td>
</tr>
<tr>
<td>CAR = Current antiretroviral regimen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Study 201584, CAR = ABC/DTG/3TC or DTG+2NRTIs if HLA B*5701 positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Study 201585, CAR = NNRTI+2NRTIs or PI+2NRTIs or INSTI+2NRTIs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Represents the 20-week Induction period for Study 201584</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Median results are presented</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. All FLAIR (2015584) subjects received INSTI Baseline Third Agent Class.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13.2 Study Results

The primary endpoint of FLAIR and ATLAS was the proportion of patients with plasma HIV-1 RNA ≥50 copies/mL at week 48 (snapshot algorithm for the ITT-E population).

In FLAIR and ATLAS studies, CABENUVA was non-inferior to CAR on the proportion of patients having plasma HIV-1 RNA ≥50 copies/mL (see Table 17).
The non-inferiority result established in the FLAIR and ATLAS studies provides evidence that the length of HIV-1 RNA virologic suppression (i.e. < 6 months or ≥ 6 months) prior to initiation of CABENUVA did not impact overall response rates.

Treatment differences across baseline characteristics in FLAIR and ATLAS (CD4+ count, gender, age, race, BMI, baseline 3rd agent treatment class) were comparable (see Table 18). Patients in FLAIR and ATLAS were virologically-suppressed prior to Day 1 or study entry, respectively, no clinically relevant change from baseline in CD4+ cell counts was observed.

Table 17 Virologic Outcomes of Randomized Treatment of FLAIR, ATLAS and Pooled Data (ITT-E) at 48 Weeks (Snapshot analysis)

<table>
<thead>
<tr>
<th></th>
<th>FLAIR</th>
<th>ATLAS</th>
<th>Pooled Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAB + RPV (N = 283)</td>
<td>CAR (N = 283)</td>
<td>CAB + RPV (N = 308)</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>HIV-1 RNA ≥50 copies/mL</td>
<td>6 (2)</td>
<td>7 (2)</td>
<td>5 (2)</td>
</tr>
<tr>
<td>Treatment Difference</td>
<td>-0.4% (95% CI: -2.8%, 2.1%)</td>
<td>0.7% (95% CI: -1.2%, 2.5%)</td>
<td>0.2% (95% CI: -1.4%, 1.7%)</td>
</tr>
<tr>
<td>HIV-1 RNA <50 copies/mL</td>
<td>265 (94)</td>
<td>264 (93)</td>
<td>285 (93)</td>
</tr>
<tr>
<td>Treatment Difference</td>
<td>0.4% (95% CI: -3.7%, 4.5%)</td>
<td>-3.0% (95% CI: -6.7%, 0.7%)</td>
<td>-1.4% (95% CI: -4.1%, 1.4%)</td>
</tr>
<tr>
<td>No virologic data at Week 48 window</td>
<td>12 (4)</td>
<td>12 (4)</td>
<td>18 (6)</td>
</tr>
<tr>
<td>Discontinued due to adverse event or death</td>
<td>8 (3)</td>
<td>2 (<1)</td>
<td>11 (4)</td>
</tr>
<tr>
<td>Discontinued for other reasons</td>
<td>4 (1)</td>
<td>10 (4)</td>
<td>7 (2)</td>
</tr>
<tr>
<td>Missing data during window but on study</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*a*Includes subjects who discontinued for lack of efficacy, discontinued while not suppressed.

*b*Treatment difference [(cabotegravir plus rilpivirine)–current antiretroviral regimen]. Adjusted for baseline stratification factors and assessed using a non-inferiority margin of 6% (FLAIR and ATLAS) and 4% (Pooled) (Intent-to-Treat Exposed population).

*c*Treatment difference [(cabotegravir plus rilpivirine)–current antiretroviral regimen] Adjusted for baseline stratification factors and assessed using a non-inferiority margin of -10% (FLAIR, ATLAS and Pooled) (Intent-to-Treat Exposed population).

n = Number of subjects in each treatment group, CI = Confidence interval, CAB = Cabotegravir, RPV = Rilpivirine, CAR = Current antiretroviral regimen.
Table 18 Proportion of Subjects in FLAIR and ATLAS with Plasma HIV-1 RNA ≥50 copies/mL at Week 48 for Key Baseline Factors (Snapshot Algorithm).

<table>
<thead>
<tr>
<th>Baseline Factor</th>
<th>FLAIR and ATLAS Pooled Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAB + RPV N = 591 n/N (%)</td>
</tr>
<tr>
<td>Baseline CD4+ (cells/ mm3)</td>
<td></td>
</tr>
<tr>
<td><350</td>
<td>0/42</td>
</tr>
<tr>
<td>≥350 to <500</td>
<td>5/120 (4)</td>
</tr>
<tr>
<td>≥500</td>
<td>6/429 (1)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>6/429 (1)</td>
</tr>
<tr>
<td>Female</td>
<td>5/162 (3)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>9/430 (2)</td>
</tr>
<tr>
<td>African-American/African Heritage</td>
<td>2/109 (2)</td>
</tr>
<tr>
<td>Asian/Other</td>
<td>0/52</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
</tr>
<tr>
<td><30 kg/m2</td>
<td>6/491 (1)</td>
</tr>
<tr>
<td>≥30 kg/m2</td>
<td>5/100 (5)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>9/492 (2)</td>
</tr>
<tr>
<td>≥50</td>
<td>2/99 (2)</td>
</tr>
<tr>
<td>Baseline antiviral therapy at randomization</td>
<td></td>
</tr>
<tr>
<td>PI containing regimen</td>
<td>1/51 (2)</td>
</tr>
<tr>
<td>INSTI containing regimen</td>
<td>6/385 (2)</td>
</tr>
<tr>
<td>NNRTI containing regimen</td>
<td>4/155 (3)</td>
</tr>
</tbody>
</table>

Notes: CAB = Cabotegravir, RPV = Rilpivirine, CAR = Current antiretroviral regimen.

14 MICROBIOLOGY

Antiviral Activity in Cell Culture
Cabotegravir exhibited antiviral activity against laboratory strains of wild-type HIV-1 with mean concentration of cabotegravir necessary to reduce viral replication by 50 percent (EC$_{50}$) values of 0.22 nM to 1.4 nM in peripheral blood mononuclear cell (PBMCs) and 293 cells. Cabotegravir demonstrated antiviral activity in cell culture against a panel of 24 HIV-1 clinical isolates (3 in each group of M [clades A, B, C, D, E, F, and G] and 3 in group O) with EC$_{50}$ values ranging from 0.02 nM to 1.06 nM for HIV-1. Cabotegravir EC$_{50}$ values against 4 HIV-2 clinical isolates ranged from 0.10 nM to 0.14 nM.

Rilpivirine exhibited activity against laboratory strains of wild-type HIV-1 in an acutely infected T-cell line with a median EC$_{50}$ value for HIV-1$_{env}$ of 0.73 nM (0.27 ng per mL). Rilpivirine also demonstrated antiviral activity against a broad panel of HIV-1 group M (clades A, B, C, D, F, G,
and H) primary isolates with EC\textsubscript{50} values ranging from 0.07 nM to 1.01 nM and group O primary isolates with EC\textsubscript{50} values ranging from 2.88 to 8.45 nM.

Antiviral Activity in Combination with Other Antiviral Agents

Neither cabotegravir nor rilpivirine were antagonistic with all tested anti-HIV agents or with each other when tested in combination (\textit{in vitro} assessments were conducted in combination with rilpivirine, lamivudine, tenofovir and emtricitabine).

Effect of Human Serum and Serum Proteins

\textit{in vitro} studies suggested a 408-fold shift in EC\textsubscript{50} of cabotegravir in the presence of 100% human serum (by method of extrapolation), and the protein adjusted EC\textsubscript{50} (PA-EC\textsubscript{50}) was estimated to be 102 nM in MT4 cells. Rilpivirine is highly bound (approximately 99.7%) to plasma proteins \textit{in vitro}, primarily to albumin.

Resistance \textit{In Vitro}

Isolation from wild-type HIV-1 and activity against resistant strains:

Cabotegravir-resistant viruses were selected during passage of HIV-1 strain IIIB in MT-2 cells in the presence of cabotegravir. Amino acid substitutions in integrase which emerged and conferred decreased susceptibility to cabotegravir included Q146L (fold change: 1.3 to 4.6), S153Y (fold change: 2.8 to 8.4), and I162M (fold change: 2.8). The integrase substitution T124A also emerged alone (fold change: 1.1 to 7.4 in cabotegravir susceptibility), in combination with S153Y (fold change: 3.6 to 6.6 in cabotegravir susceptibility), or I162M (2.8-fold change in cabotegravir susceptibility). Cell culture passage of virus harboring integrase substitutions Q148H, Q148K, or Q148R selected for additional substitutions (C56S, V72I, L74M, V75A, T122N, E138K, G140S, G149A, and M154I), with substituted viruses having reduced susceptibility to cabotegravir of 2.0-fold to 410-fold change. The combinations of E138K+Q148K and V72I+E138K+Q148K conferred the greatest reductions of 53-fold to 260-fold change and 410-fold change, respectively.

Rilpivirine-resistant strains were selected in cell culture starting from wild-type HIV-1 of different origins and subtypes as well as NNRTI-resistant HIV-1. The frequently observed amino acid substitutions that emerged and conferred decreased phenotypic susceptibility to rilpivirine included: L100I; K101E; V106I and A; V108I; E138K and G, Q, R; V179F and I; Y181C and I; V189I; G190E; H221Y; F227C; and M230I and L.

Resistance \textit{In Vivo}

In LATTE (oral), there were three Confirmed Virologic Failure with resistance through Week 96. Three additional Confirmed Virologic Failure with resistance occurred through Week 264. The substitutions associated with resistance to oral cabotegravir through week 264 are Q148R (3), E138Q (1), G140A (1), and G140S (1). The substitutions associated with rilpivirine resistance are E138A (1), K101E (1), K101K/E (1), and E138E/K (1). All CVFs had Subtype B virus.

In LATTE-2 (long acting injection) there was one subject with Confirmed Virologic Failure with resistance through Week 48. The substitution associated with resistance to cabotegravir is Q148R. The substitutions associated with NNRTI resistance are K103N, E138G, and K238T. This CVF had Subtype AG virus. There were no confirmed virologic failures after Week 48.
In FLAIR Baseline genotyping was performed on HIV-1 RNA; mutations were reported as treatment emergent. ATLAS Baseline genotyping was performed on PBMC DNA and mutations were reported as on treatment. The number of patients who met confirmed virologic failure (CVF) criteria was low across the pooled FLAIR and ATLAS studies. In the pooled analysis, there were 7 CVFs on cabotegravir plus rilpivirine (7/591, 1.2%) and 7 CVFs on current antiretroviral regimen (7/591, 1.2%). The substitutions associated with resistance to cabotegravir long-acting injection observed in the pooled ATLAS and FLAIR trials, are G140R (n = 1), Q148R (n = 2), and N155H (n = 1). The substitutions associated with resistance to rilpivirine are K101E (1), E138E/A/K/T (1), E138K (2), E138A (1), E138E/K (1) and E138K (1). The CVFs had subtypes A, A1, or AG.

Association of Subtype A1 and Baseline L74I Substitution in Integrase with Cabotegravir plus Rilpivirine Virologic Failure

Five of the 7 cabotegravir plus rilpivirine virologic failures in FLAIR and ATLAS had HIV-1 subtype A1 and the integrase L74I substitution (IN L74I) detected at baseline and failure timepoints. Patients with subtype A1 infection whose virus did not have IN L74I at baseline did not experience virologic failure (FLAIR results shown in Table 19). In addition, there was no detectable phenotypic resistance to cabotegravir conferred by the presence of IN L74I at baseline.

The other 2 virologic failures had subtype AG and did not have the IN L74I substitution. Six of the virologic failures with subtype A1 and AG were from Russia where the prevalence of subtypes A, A1, and AG are high. Subtypes A, A1, and AG are uncommon in Canada.

The presence of the IN L74I substitution in other subtypes, such as subtype B commonly seen in Canada, was not associated with virologic failure (Table 19). In contrast to the Phase 3 trials where all virologic failures were subtype A1 or AG, in Phase 2 clinical trials, subtypes of the cabotegravir plus rilpivirine virologic failures included A1, A, B, and C.
Table 19 Rate of Virologic Failure in FLAIR Trial: Baseline Analysis (Subtypes A1 and B, and Presence of IN L74I)

<table>
<thead>
<tr>
<th>Patient Characteristics</th>
<th>Cabotegravir plus Rilpivirine<sup>a</sup></th>
<th>Current Antiretroviral Regimen<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtype A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+IN L74I</td>
<td>3/8 (38%)</td>
<td>1/4 (25%)</td>
</tr>
<tr>
<td>-IN L74I</td>
<td>3/5 (60%)</td>
<td>1/3 (33%)</td>
</tr>
<tr>
<td>Subtype B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+IN L74I</td>
<td>0/174</td>
<td>2/174 (1%)</td>
</tr>
<tr>
<td>-IN L74I</td>
<td>0/12</td>
<td>0/11</td>
</tr>
<tr>
<td>Russia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+IN L74I</td>
<td>4/54 (7%)</td>
<td>1/39 (3%)</td>
</tr>
<tr>
<td>-IN L74I</td>
<td>3/35 (9%)</td>
<td>1/29 (3%)</td>
</tr>
<tr>
<td>Missing data</td>
<td>0/9</td>
<td>0/7</td>
</tr>
<tr>
<td>Missing data</td>
<td>0/7</td>
<td>0/3</td>
</tr>
</tbody>
</table>

^aThere were 4 virologic failures in the cabotegravir arm. One virologic failure in the cabotegravir arm had subtype AG.

^bThere were 3 virologic failures in the current antiretroviral regimen arm. Two virologic failures in the current antiretroviral regimen arm had subtype B.

Cross-resistance

Cabotegravir: Cross-resistance has been observed among INSTIs. Cabotegravir had reduced susceptibility (greater than 5-fold change) to recombinant HIV-1 strain NL432 viruses harbouring the following integrase amino acid substitutions: G118R, Q148K, Q148R, T66K+L74M, E92Q+N155H, E138A+Q148R, E138K+Q148K/R, G140C+Q148R, G140S+Q148H/K/R, Y143H+N155H, and Q148R+N155H (range: 5.1-fold to 81-fold). The substitutions E138K+Q148K and Q148R+N155H conferred the greatest reductions in susceptibility of 81-fold and 61-fold, respectively. Cabotegravir was active against viruses harboring the NNRTI substitutions K103N or Y188L, or the NRTI substitutions M184V, D67N/K70R/T215Y, or V75I/F77L/F116Y/Q151M.

Rilpivirine: Cross-resistance in site-directed mutant virus has been observed among NNRTIs. The single NNRTI substitutions K101P, Y181I, and Y181V conferred 52-, 15-, and 12 times fold change to rilpivirine, respectively. The K103N substitution did not show reduced susceptibility to rilpivirine by itself. Combinations of 2 or 3 NNRTI resistance-associated substitutions gave 3.7- to 554-fold change to rilpivirine in 38% and 66% of substitutions, respectively. Considering all available cell culture and clinical data, any of the following amino acid substitutions, when present at baseline, are likely to decrease the antiviral activity of rilpivirine: K101E and P; E138A, G, K, R, and Q; V179L; Y181C, I, and V; Y188L; H221Y; F227C; M230I and L, and the combination of L100I/K103N.
15 NON-CLINICAL TOXICOLOGY

General Toxicology
The effect of prolonged daily treatment with high doses of cabotegravir has been evaluated in repeat oral dose toxicity studies in rats (26 weeks) and in monkeys (39 weeks). There were no drug-related adverse effects in rats or monkeys given cabotegravir orally at doses that produced exposures >20 times or 4 to 6 times the exposure in humans at the MRHD, respectively.

In the 14-day monkey toxicity study, a dose of 1,000 mg/kg/day was not tolerated and resulted in morbidity associated with gastro-intestinal (GI) effects (body weight loss, emesis, loose/watery feces, and moderate to severe dehydration).

In the 28-day monkey toxicity study, end of study exposure at 500 mg/kg/day a dose that produced no adverse effects was similar to that achieved in the 14-day study at 1000 mg/kg/day. This suggests that GI intolerance observed in the 14-day study was the result of local drug administration and not systemic toxicity.

In a 3-month study in rats, when cabotegravir was administered by monthly subcutaneous (SC) injection (up to 100 mg/kg/dose); monthly IM injection (up to 75 mg/kg/dose) or weekly SC injection (up to 100 mg/kg/dose), there were no adverse effects noted and no new target organ toxicities (at exposures >30 times the exposure in humans at the MRHD of 400 mg IM dose). Local effects at the injection sites were observed and these included dose-proportional increases in redness and swelling at all dose-levels accompanied by inflammatory reactions (erythema and edema graded very slight to severe) in animals given monthly IM injections, at all doses in female animals given monthly SC injections (≥5 mg/kg/month) and in males given ≥30 mg/kg/month. Treatment-related microscopic findings consisted of granulomatous inflammation and mixed inflammatory cell infiltration at the injection sites, with correlating macroscopic changes (pale areas, nodules, and masses).

Animal toxicology studies have been conducted with rilpivirine in mice, rats, rabbits, dogs and cynomolgus monkeys. The target organs and systems of toxicity were the adrenal cortex and the associated steroid biosynthesis (mouse, rat, dog, cynomolgus monkey), the reproductive organs (female mouse, male and female dog), the liver (mouse, rat, dog), the thyroid and pituitary gland (rat), the kidney (mouse, dog), the hematopoietic system (mouse, rat, dog), and the coagulation system (rat).

Studies of IM administration of rilpivirine long-acting injections were conducted in minipigs (9-month study with once monthly repeated IM dosing) and dogs (2 IM injections with a 2-week interval). There were no new target organ toxicities identified due to the change in route of administration (rilpivirine IM) versus what was seen in oral rilpivirine toxicity studies.

Carcinogenesis/mutagenesis
Two-year carcinogenicity studies in mice and rats were conducted with cabotegravir. In mice, no drug-related increases in tumor incidence were observed at cabotegravir exposures (AUC) up to 8 times (males) and 7 times (females) MRHD. In rats, no drug-related increases in tumor incidence were observed at cabotegravir exposures up to 26 times MRHD. Cabotegravir was not genotoxic in the bacterial reverse mutation assay, mouse lymphoma assay, or in the vivo rodent micronucleus assay.

Rilpivirine was not carcinogenic in rats. In mice, rilpivirine was positive for hepatocellular neoplasms in both males and females. The observed hepatocellular findings in mice may be
rodent specific. At the lowest tested doses in mice, the systemic exposures (based on AUC) to rilpivirine were >17 times the exposure in human at the MRHD of 25 mg once daily in HIV-1–infected patients or 600 mg IM injection dose of rilpivirine long-acting injectable suspension. Rilpivirine was not genotoxic in the bacterial reverse mutation assay, mouse lymphoma assay, or in the \textit{in vivo} rodent micronucleus assay.

16 SUPPORTING PRODUCT MONOGRAPHS

1. EDURANT (tablets, 25 mg rilpivirine), submission control \#223685, Product Monograph, Janssen Inc. (March 4, 2019)
READ THIS FOR SAFE AND EFFECTIVE USE OF YOUR MEDICINE
PATIENT MEDICATION INFORMATION

Pr Vocabria
30 mg Cabotegravir Tablets

Pr Cabenuva
600 mg / 3 mL (200 mg/mL) Cabotegravir Extended Release Injectable Suspension and
900 mg / 3 mL (300 mg/mL) Rilpivirine Extended Release Injectable Suspension

400 mg / 2 mL (200 mg/mL) Cabotegravir Extended Release Injectable Suspension and
600 mg / 2 mL (300 mg/mL) Rilpivirine Extended Release Injectable Suspension

Read this carefully before you start taking Vocabria or CABENUVA and each time you get
a refill or have a new injection visit. This leaflet is a summary and will not tell you everything
about this drug. Talk to your healthcare professional about your medical condition and
treatment and ask if there is any new information about Vocabria or CABENUVA.

What is Vocabria used for?
- Vocabria is taken together with EDURANT (rilpivirine) to treat HIV (human
 immunodeficiency virus) infection in adults:
 - in the month before you begin your treatment on CABENUVA to test how well you
tolerate these medicines (cabotegravir and rilpivirine) and
 - as a replacement for CABENUVA injections if you need to miss your next scheduled
injection (e.g. vacation).

What is CABENUVA used for?
- CABENUVA is used to treat HIV infection in adults.
- CABENUVA replaces your current HIV treatment.

How do Vocabria and CABENUVA work?
Vocabria tablets contain a medicine, cabotegravir, that is used to treat HIV infection when
taken together with the medicine rilpivirine tablets (EDURANT).

CABENUVA kits contain long-acting injections of the medicines cabotegravir and rilpivirine.

These medicines work together to keep the amount of virus in your body at a low level. This
helps maintain the number of CD4+ cell count in your blood. CD4+ cells are a type of white
blood cells that are important in helping your body to fight infection. Vocabria and
CABENUVA do not cure HIV infection.

What are the ingredients in Vocabria?
Medicinal ingredients: 30 mg cabotegravir (as cabotegravir sodium)
Non-medicinal ingredients: hypromellose, lactose monohydrate, magnesium stearate,
microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, and titanium dioxide
What are the ingredients in CABENUVA?

Cabotegravir Injections (2 mL or 3 mL):
Medicinal ingredients: 400 mg / 2 mL or 600 mg / 3 mL cabotegravir
Non-medicinal ingredients: mannitol, polysorbate 20, polyethylene glycol (PEG) 3350, water for injection.

Rilpivirine Injections (2 mL or 3 mL):
Medicinal ingredients: 600 mg / 2 mL or 900 mg / 3 mL rilpivirine
Non-medicinal ingredients: citric acid monohydrate, glucose monohydrate, poloxamer 338, sodium dihydrogen phosphate monohydrate, sodium hydroxide, water for injection.

VOCABRIA comes in the following dosage forms:
30 mg cabotegravir tablets.

CABENUVA comes in the following dosage forms:
2 mL Dosing Kit: 400 mg / 2 mL cabotegravir injection + 600 mg / 2 mL rilpivirine injection.
3 mL Dosing Kit: 600 mg / 3 mL cabotegravir injection + 900 mg / 3 mL rilpivirine injection.

Do not use VOCABRIA or CABENUVA if:
- You are allergic (hypersensitive) to cabotegravir or rilpivirine or to any of the other ingredients of VOCABRIA or CABENUVA. See “What are the ingredients in VOCABRIA/CABENUVA?”.

Do not use VOCABRIA if:
- You are taking any of these medicines:
 - carbamazepine, oxcarbazepine, phenobarbital, or phenytoin (also known as anticonvulsants used to treat epilepsy and prevent seizures).
 - Rifampin or rifapentine (to treat some bacterial infections such as tuberculosis).

When taking VOCABRIA with EDURANT, please read the EDURANT Patient Medication Information for any additional medicines that should not be taken with rilpivirine.

Do not use CABENUVA if:
- You are taking any of these medicines:
 - carbamazepine, oxcarbazepine, phenobarbital, or phenytoin (also known as anticonvulsants used to treat epilepsy and prevent seizures).
 - Rifampin, rifapentine or rifabutin (to treat some bacterial infections such as tuberculosis).
 - Dexamethasone – more than one dose (a corticosteroid used in a variety of conditions such as inflammation and allergic reactions).
 - products that contain St John’s wort (*Hypericum perforatum*) (a herbal product used to treat depression).
To help avoid side effects and ensure proper use, talk to your healthcare professional before you take VOCABRIA or CABENUVA. Talk about any health conditions or problems you may have, including if you:

- have ever had a mental health problem.
- have had liver problems, including hepatitis B or C infection.
- have ever had a severe skin rash or an allergic reaction to cabotegravir or rilpivirine (COMPLERA, EDURANT, or ODEFSEY).

Other warnings you should know about:

Pregnancy
Talk to your doctor if you are pregnant or plan to become pregnant. Your doctor will consider the benefit to you and the risk to your baby when taking VOCABRIA or CABENUVA while you are pregnant.

It is not known if VOCABRIA or CABENUVA will harm your unborn baby. There is a registry for women who take antiretroviral medicines during pregnancy. The purpose of this registry is to collect information about the health of you and your baby. Talk to your healthcare professional about how you can take part in this registry.

Breastfeeding
Do not breastfeed if you are taking VOCABRIA and CABENUVA. There is a risk of passing HIV-1 to your baby if you breastfeed. It is not known whether the ingredients of VOCABRIA can pass into breast milk and harm your baby. CABENUVA may pass into breastmilk for 12 months or longer after the last injection of CABENUVA. Talk with your healthcare provider about the best way to feed your baby.

Infecting others with HIV
VOCABRIA or CABENUVA will not stop you from passing HIV to others, although this risk is lower if you take your HIV medicine as instructed by your healthcare professional. You should take steps to avoid this by:

- Using condoms when you have oral or penetrative sex.
- Not reusing or sharing needles, syringes, or other injection equipment.

More Information about Long-Acting Medications
CABENUVA is a long acting medication, so if you stop treatment CABENUVA may remain in your system for up to a year or more after your last injection. It is important that you attend your planned appointments to receive CABENUVA injections. It is important for you to talk to your healthcare professional if you are thinking about stopping treatment. You will need to take other medicines to treat HIV infection and to reduce the risk of developing viral resistance.

Reactions to Injections
Post-injection reaction symptoms have happened within minutes in some people after receiving their rilpivirine injection. Most symptoms resolved within a few minutes after the injection. Symptoms of post-injection reactions may include: difficulty breathing, stomach cramps, sweating, numbness of your mouth, feeling anxious, feeling warm, feeling lightheaded or feeling like you are going to pass out (faint), and blood pressure changes. Tell your healthcare professional if you experience these symptoms after you receive your injections.

Tell your healthcare professional about all the medicines you take, including any drugs, vitamins, minerals, natural supplements or alternative medicines.
The following may interact with VOCABRIA:
- medicines called antacids to treat indigestion and heartburn or laxatives, or other products that contain aluminum and/or calcium carbonate, magnesium or buffered medicines.
 - Taking antacids can stop VOCABRIA from being absorbed into your body and not make it work as well.
 - Antacids should be taken at least 2 hours before or 4 hours after you take VOCABRIA.

As VOCABRIA is to be taken together with EDURANT, please read the EDURANT Patient Medication Information for any additional interactions that may occur with rilpivirine.

The following may interact with CABENUVA:
- clarithromycin, erythromycin, antibiotics used to treat bacterial infections.
- methadone, a medicine used to treat narcotic withdrawal and dependence.

Talk to your healthcare professional for further advice if you are taking any of these medicines.

How to take VOCABRIA (and EDURANT):
Take VOCABRIA with EDURANT every day exactly as your doctor has told you to, for as long as your doctor has told you to. When starting to take VOCABRIA for the first time it should be taken for at least 28 days. VOCABRIA and EDURANT must be taken with a meal to help get the right amount of the medicine rilpivirine in your body. A protein drink alone does not replace a meal. Check with your healthcare professional if you are not sure or if you have questions.

Usual dose of VOCABRIA:
The usual dose of VOCABRIA is one tablet (30 mg cabotegravir) taken once a day with one tablet of EDURANT (25 mg rilpivirine).

How to take CABENUVA:
CABENUVA will be administered by your healthcare professional.

Usual dose of CABENUVA:
CABENUVA is given by your healthcare professional as two injections into the muscle of your buttocks (one each for cabotegravir and rilpivirine) once a month.

<table>
<thead>
<tr>
<th>ORAL LEAD-IN</th>
<th>INITIATION INJECTIONS</th>
<th>CONTINUATION INJECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 1*</td>
<td>Month 2</td>
<td>Month 3 onwards</td>
</tr>
<tr>
<td>VOCABRIA</td>
<td>CABENUVA</td>
<td>CABENUVA</td>
</tr>
<tr>
<td>cabotegravir</td>
<td>3 mL cabotegravir</td>
<td>2 mL cabotegravir</td>
</tr>
<tr>
<td>tablet</td>
<td>injection</td>
<td>injection</td>
</tr>
<tr>
<td>once daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDURANT</td>
<td>3 mL rilpivirine</td>
<td>2 mL rilpivirine</td>
</tr>
<tr>
<td>rilpivirine</td>
<td>injection</td>
<td>injection</td>
</tr>
<tr>
<td>tablet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>once daily</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*It is important to take your oral lead-in tablets, with a meal, for at least 28-days, including on the day you start your first injections.
Overdose:
If you think you have taken too much VOCABRIA, contact your healthcare professional, hospital emergency department or regional poison control centre immediately, even if there are no symptoms.

Missed Dose:
If you miss a tablet, take VOCABRIA soon as you remember. If your next dose is due within 12 hours, skip the dose you missed and take the next one at the usual time. Then continue your treatment as before. Don't take a double dose to make up for a missed dose.

Missed Injections:
It is important to not miss any of your planned appointments. If you are going to miss, or have missed, an injection of CABENUVA, talk to your doctor or healthcare professional as soon as possible. Your doctor may recommend you take VOCABRIA together with EDURANT tablets until you are able to take CABENUVA injections again.

What are possible side effects from using VOCABRIA and CABENUVA?
These are not all the possible side effects you may feel when taking VOCABRIA or CABENUVA. If you experience any side effects not listed here, contact your healthcare professional.

The most common side effects of CABENUVA are:
- Injection site reactions; such as pain and discomfort, a hardened mass or lump, swelling, redness, itching, bruising and warmth at the site of the injection. Tell your doctor or pharmacist if the symptoms you experience at the injection site becomes severe or troublesome.

The most common side effects of CABENUVA and VOCABRIA are:
- Fever / feeling hot
- Feeling tired or weak, lack of energy
- Headache
- Muscle pain
- Feeling sick (nausea)
- Sleep problems (difficulty falling asleep or staying asleep)
- Dizziness
- Rash (mild)
- Diarrhea

Additional side effects that may occur with both CABENUVA and VOCABRIA include: intestinal gas (wind/flatulence), being sick (vomiting), stomach pain, abnormal dreams, weight gain, feeling sleepy, and malaise (feeling unwell). During or after an injection of CABENUVA you may feel lightheaded which could lead to fainting.

Tell your doctor if you have any side effect that bothers you or that does not go away. For more information, ask your healthcare professional.
<table>
<thead>
<tr>
<th>Symptom / effect</th>
<th>Talk to your healthcare professional</th>
<th>Stop taking drug and get immediate medical help</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Only if severe</td>
<td>In all cases</td>
</tr>
<tr>
<td>UNCOMMON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe skin rash and allergic (hypersensitivity) reactions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Skin rash, fever, lack of energy (fatigue), difficulty breathing, swelling of the mouth or face causing difficulty in breathing, blisters or peeling of the skin, sores in mouth, muscle or joint aches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depression or mood changes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Feelings of deep sadness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Feelings of unworthiness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Have thoughts of hurting yourself (suicide)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Have tried to hurt yourself (behavior)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Anxiety; feelings of worry, nervousness or unease.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver problems and blood test results:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Yellowing of the skin and the whites of the eyes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dark or tea coloured urine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pale coloured stools/ bowel movements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Nausea/ vomiting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Loss of appetite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pain, aching or tenderness on right side below the ribs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Inflammation (Hepatitis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bilirubin increase (substance produced by liver)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Increase of muscle enzymes (CPK, creatinine)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If you have a troublesome symptom or side effect that is not listed here or becomes bad enough to interfere with your daily activities, talk to your healthcare professional.

Reporting Side Effects

You can report any suspected side effects associated with the use of health products to Health Canada by:

- Visiting the Web page on Adverse Reaction Reporting (https://www.canada.ca/en/health-canada/services/drugs-health-products/medeffect-canada/adverse-reaction-reporting.html) for information on how to report online, by mail or by fax; or
- Calling toll-free at 1-866-234-2345.

NOTE: Contact your health professional if you need information about how to manage your side effects. The Canada Vigilance Program does not provide medical advice.

Storage:

Store VOCABRIA at up to 30°C.

Store CABENUVA in the refrigerator at 2° to 8°C in the original carton until ready to use. Do not freeze.

Keep out of reach and sight of children.

If you want more information about VOCABRIA or CABENUVA:

- Talk to your healthcare professional
- Find the full product monograph that is prepared for healthcare professionals and includes this Patient Medication Information by visiting the Health Canada website (http://hc-sc.gc.ca/index-eng.php); the manufacturer’s website www.viivhealthcare.ca, or by calling 1-877-393-8448.

This leaflet was prepared by ViiV Healthcare ULC

Last Revised March 18, 2020

©2020 ViiV Healthcare group of companies or its licensor

Trademarks are owned by or licensed to the ViiV Healthcare group of companies